The Influence of Cyclical Ketogenic Reduction Diet vs. Nutritionally Balanced Reduction Diet on Body Composition, Strength, and Endurance Performance in Healthy Young Males: A Randomized Controlled Trial
Language English Country Switzerland Media electronic
Document type Comparative Study, Journal Article, Randomized Controlled Trial
Grant support
64165
RVO VFN
IN 00023001
CZ - DRO ("Institute for Clinical and Experimental Medicine - IKEM")
PubMed
32947920
PubMed Central
PMC7551961
DOI
10.3390/nu12092832
PII: nu12092832
Knihovny.cz E-resources
- Keywords
- body composition, endurance, ketogenic diet, strength parameters, training,
- MeSH
- Exercise MeSH
- Adult MeSH
- Physical Endurance physiology MeSH
- Diet, Ketogenic methods MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Resistance Training MeSH
- Diet, Reducing methods MeSH
- Body Composition physiology MeSH
- Muscle Strength physiology MeSH
- Check Tag
- Adult MeSH
- Humans MeSH
- Adolescent MeSH
- Young Adult MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Randomized Controlled Trial MeSH
- Comparative Study MeSH
(1) Background: The influence of ketogenic diet on physical fitness remains controversial. We performed a randomized controlled trial to compare the effect of cyclical ketogenic reduction diet (CKD) vs. nutritionally balanced reduction diet (RD) on body composition, muscle strength, and endurance performance. (2) Methods: 25 healthy young males undergoing regular resistance training combined with aerobic training were randomized to CKD (n = 13) or RD (n = 12). Body composition, muscle strength and spiroergometric parameters were measured at baseline and after eight weeks of intervention. (3) Results: Both CKD and RD decreased body weight, body fat, and BMI. Lean body mass and body water decreased in CKD and did not significantly change in RD group. Muscle strength parameters were not affected in CKD while in RD group lat pull-down and leg press values increased. Similarly, endurance performance was not changed in CKD group while in RD group peak workload and peak oxygen uptake increased. (4) Conclusions: Our data show that in healthy young males undergoing resistance and aerobic training comparable weight reduction were achieved by CKD and RD. In RD group; improved muscle strength and endurance performance was noted relative to neutral effect of CKD that also slightly reduced lean body mass.
See more in PubMed
Mozaffarian D. Dietary and Policy Priorities for Cardiovascular Disease, Diabetes, and Obesity: A Comprehensive Review. Circulation. 2016;133:187–225. doi: 10.1161/CIRCULATIONAHA.115.018585. PubMed DOI PMC
Burke L.M., Kiens B., Ivy J.L. Carbohydrates and fat for training and recovery. J. Sports Sci. 2004;22:15–30. doi: 10.1080/0264041031000140527. PubMed DOI
Kaspar M.B., Austin K., Huecker M., Sarav M. Ketogenic Diet: From the Historical Records to Use in Elite Athletes. Curr. Nutr. Rep. 2019;8:340–346. doi: 10.1007/s13668-019-00294-0. PubMed DOI
Hawley J.A., Brouns F., Jeukendrup A. Strategies to enhance fat utilisation during exercise. Sports Med. 1998;25:241–257. doi: 10.2165/00007256-199825040-00003. PubMed DOI
Pilis K., Pilis A., Stec K., Pilis W., Langfort J., Letkiewicz S., Michalski C., Czuba M., Zych M., Chalimoniuk M. Three-Year Chronic Consumption of Low-Carbohydrate Diet Impairs Exercise Performance and Has a Small Unfavorable Effect on Lipid Profile in Middle-Aged Men. Nutrients. 2018;10:1914. doi: 10.3390/nu10121914. PubMed DOI PMC
Westman E.C., Feinman R.D., Mavropoulos J.C., Vernon M.C., Volek J.S., Wortman J.A., Yancy W.S., Phinney S.D. Low-carbohydrate nutrition and metabolism. Am. J. Clin. Nutr. 2007;86:276–284. doi: 10.1093/ajcn/86.2.276. PubMed DOI
Webster C.C., Swart J., Noakes T.D., Smith J.A. A Carbohydrate Ingestion Intervention in an Elite Athlete Who Follows a Low-Carbohydrate High-Fat Diet. Int. J. Sports Physiol. Perform. 2018;13:957–960. doi: 10.1123/ijspp.2017-0392. PubMed DOI
Noakes T.D., Windt J. Evidence that supports the prescription of low-carbohydrate high-fat diets: A narrative review. Br. J. Sports Med. 2017;51:133–139. doi: 10.1136/bjsports-2016-096491. PubMed DOI
Miller S.L., Wolfe R.R. Physical exercise as a modulator of adaptation to low and high carbohydrate and low and high fat intakes. Eur. J. Clin. Nutr. 1999;53(Suppl. 1):S112–S119. doi: 10.1038/sj.ejcn.1600751. PubMed DOI
Pinckaers P.J., Churchward-Venne T.A., Bailey D., van Loon L.J. Ketone Bodies and Exercise Performance: The Next Magic Bullet or Merely Hype? Sports Med. 2017;47:383–391. doi: 10.1007/s40279-016-0577-y. PubMed DOI PMC
McSwiney F.T., Doyle L., Plews D.J., Zinn C. Impact of Ketogenic Diet on Athletes: Current Insights. Open Access J. Sports Med. 2019;10:171–183. doi: 10.2147/OAJSM.S180409. PubMed DOI PMC
Heatherly A.J., Killen L.G., Smith A.F., Waldman H.S., Seltmann C.L., Hollingsworth A., O’Neal E.K. Effects of Ad libitum Low-Carbohydrate High-Fat Dieting in Middle-Age Male Runners. Med. Sci. Sports Exerc. 2018;50:570–579. doi: 10.1249/MSS.0000000000001477. PubMed DOI
Burke L.M. Re-Examining High-Fat Diets for Sports Performance: Did We Call the “Nail in the Coffin” Too Soon? Sports Med. 2015;45(Suppl. 1):S33–S49. doi: 10.1007/s40279-015-0393-9. PubMed DOI PMC
Yeo W.K., Carey A.L., Burke L., Spriet L.L., Hawley J.A. Fat adaptation in well-trained athletes: Effects on cell metabolism. Appl. Physiol. Nutr. Metab. 2011;36:12–22. doi: 10.1139/H10-089. PubMed DOI
Phinney S.D., Bistrian B.R., Evans W.J., Gervino E., Blackburn G.L. The human metabolic response to chronic ketosis without caloric restriction: Preservation of submaximal exercise capability with reduced carbohydrate oxidation. Metabolism. 1983;32:769–776. doi: 10.1016/0026-0495(83)90106-3. PubMed DOI
Bailey C.P., Hennessy E. A review of the ketogenic diet for endurance athletes: Performance enhancer or placebo effect? J. Int. Soc. Sports Nutr. 2020;17:33. doi: 10.1186/s12970-020-00362-9. PubMed DOI PMC
Hawley J.A., Burke L.M., Phillips S.M., Spriet L.L. Nutritional modulation of training-induced skeletal muscle adaptations. J. Appl. Physiol. 2011;110:834–845. doi: 10.1152/japplphysiol.00949.2010. PubMed DOI
Ma S., Huang Q., Tominaga T., Liu C., Suzuki K. An 8-Week Ketogenic Diet Alternated Interleukin-6, Ketolytic and Lipolytic Gene Expression, and Enhanced Exercise Capacity in Mice. Nutrients. 2018;10:1696. doi: 10.3390/nu10111696. PubMed DOI PMC
Bolla A.M., Caretto A., Laurenzi A., Scavini M., Piemonti L. Low-Carb and Ketogenic Diets in Type 1 and Type 2 Diabetes. Nutrients. 2019;11:962. doi: 10.3390/nu11050962. PubMed DOI PMC
Bazzano L.A., Hu T., Reynolds K., Yao L., Bunol C., Liu Y., Chen C.S., Klag M.J., Whelton P.K., He J. Effects of low-carbohydrate and low-fat diets: A randomized trial. Ann. Intern. Med. 2014;161:309–318. doi: 10.7326/M14-0180. PubMed DOI PMC
Kelly T., Unwin D., Finucane F. Low-Carbohydrate Diets in the Management of Obesity and Type 2 Diabetes: A Review from Clinicians Using the Approach in Practice. Int. J. Environ. Res. Public Health. 2020;17:2557. doi: 10.3390/ijerph17072557. PubMed DOI PMC
Brouns F. Overweight and diabetes prevention: Is a low-carbohydrate-high-fat diet recommendable? Eur. J. Nutr. 2018;57:1301–1312. doi: 10.1007/s00394-018-1636-y. PubMed DOI PMC
Gordon D., Schaitel K., Pennefather A., Gernigon M., Keiller D., Barnes R. The incidence of plateau at VO(2max) is affected by a bout of prior-priming exercise. Clin. Physiol. Funct. Imaging. 2012;32:39–44. doi: 10.1111/j.1475-097X.2011.01052.x. PubMed DOI
Merra G., Miranda R., Barrucco S., Gualtieri P., Mazza M., Moriconi E., Marchetti M., Chang T.F., De Lorenzo A., Di Renzo L. Very-low-calorie ketogenic diet with aminoacid supplement versus very low restricted-calorie diet for preserving muscle mass during weight loss: A pilot double-blind study. Eur. Rev. Med. Pharmacol Sci. 2016;20:2613–2621. PubMed
Moreno B., Bellido D., Sajoux I., Goday A., Saavedra D., Crujeiras A.B., Casanueva F.F. Comparison of a very low-calorie-ketogenic diet with a standard low-calorie diet in the treatment of obesity. Endocrine. 2014;47:793–805. doi: 10.1007/s12020-014-0192-3. PubMed DOI
Perissiou M., Borkoles E., Kobayashi K., Polman R. The Effect of an 8 Week Prescribed Exercise and Low-Carbohydrate Diet on Cardiorespiratory Fitness, Body Composition and Cardiometabolic Risk Factors in Obese Individuals: A Randomised Controlled Trial. Nutrients. 2020;12:482. doi: 10.3390/nu12020482. PubMed DOI PMC
Vargas S., Romance R., Petro J.L., Bonilla D.A., Galancho I., Espinar S., Kreider R.B., Benitez-Porres J. Efficacy of ketogenic diet on body composition during resistance training in trained men: A randomized controlled trial. J. Int. Soc. Sports Nutr. 2018;15:31. doi: 10.1186/s12970-018-0236-9. PubMed DOI PMC
Greene D.A., Varley B.J., Hartwig T.B., Chapman P., Rigney M. A Low-Carbohydrate Ketogenic Diet Reduces Body Mass Without Compromising Performance in Powerlifting and Olympic Weightlifting Athletes. J. Strength Cond Res. 2018;32:3373–3382. doi: 10.1519/JSC.0000000000002904. PubMed DOI
Wilson J.M., Lowery R.P., Roberts M.D., Sharp M.H., Joy J.M., Shields K.A., Partl J., Volek J.S., D’Agostino D. The Effects of Ketogenic Dieting on Body Composition, Strength, Power, and Hormonal Profiles in Resistance Training Males. J. Strength Cond Res. 2017 doi: 10.1519/JSC.0000000000001935. PubMed DOI
Kephart W.C., Pledge C.D., Roberson P.A., Mumford P.W., Romero M.A., Mobley C.B., Martin J.S., Young K.C., Lowery R.P., Wilson J.M., et al. The Three-Month Effects of a Ketogenic Diet on Body Composition, Blood Parameters, and Performance Metrics in CrossFit Trainees: A Pilot Study. Sports. 2018;6:1. doi: 10.3390/sports6010001. PubMed DOI PMC
McSwiney F.T., Wardrop B., Hyde P.N., Lafountain R.A., Volek J.S., Doyle L. Keto-adaptation enhances exercise performance and body composition responses to training in endurance athletes. Metabolism. 2018;81:25–34. doi: 10.1016/j.metabol.2017.10.010. PubMed DOI
Rubini A., Bosco G., Lodi A., Cenci L., Parmagnani A., Grimaldi K., Zhongjin Y., Paoli A. Effects of Twenty Days of the Ketogenic Diet on Metabolic and Respiratory Parameters in Healthy Subjects. Lung. 2015;193:939–945. doi: 10.1007/s00408-016-9958-0. PubMed DOI
Burke L.M., Ross M.L., Garvican-Lewis L.A., Welvaert M., Heikura I.A., Forbes S.G., Mirtschin J.G., Cato L.E., Strobel N., Sharma A.P., et al. Low carbohydrate, high fat diet impairs exercise economy and negates the performance benefit from intensified training in elite race walkers. J. Physiol. 2017;595:2785–2807. doi: 10.1113/JP273230. PubMed DOI PMC
Burke L.M., Sharma A.P., Heikura I.A., Forbes S.F., Holloway M., McKay A.K.A., Bone J.L., Leckey J.J., Welvaert M., Ross M.L. Crisis of confidence averted: Impairment of exercise economy and performance in elite race walkers by ketogenic low carbohydrate, high fat (LCHF) diet is reproducible. PLoS ONE. 2020;15:e0234027. doi: 10.1371/journal.pone.0234027. PubMed DOI PMC
Phinney S.D., Horton E.S., Sims E.A., Hanson J.S., Danforth E., Jr., LaGrange B.M. Capacity for moderate exercise in obese subjects after adaptation to a hypocaloric, ketogenic diet. J. Clin. Invest. 1980;66:1152–1161. doi: 10.1172/JCI109945. PubMed DOI PMC
Harvey K.L., Holcomb L.E., Kolwicz S.C., Jr. Ketogenic Diets and Exercise Performance. Nutrients. 2019;11:2296. doi: 10.3390/nu11102296. PubMed DOI PMC
Egan B., Zierath J.R. Exercise metabolism and the molecular regulation of skeletal muscle adaptation. Cell Metab. 2013;17:162–184. doi: 10.1016/j.cmet.2012.12.012. PubMed DOI
Evans M., Cogan K.E., Egan B. Metabolism of ketone bodies during exercise and training: Physiological basis for exogenous supplementation. J. Physiol. 2017;595:2857–2871. doi: 10.1113/JP273185. PubMed DOI PMC