Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers

. 2019 Oct ; 132 (10) : 2881-2898. [epub] 20190716

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31312850

Grantová podpora
16-16992S Grantová Agentura České Republiky
OTKA K116277 National Science Foundation
H2020-MSCA-IF-2016-746253 H2020 Marie Skłodowska-Curie Actions (AGELWHEAT)
AGL2014-52445-R Ministerio de Economía y Competitividad with co-financing from the European Regional Development Fund
No. CZ.02.1.01/0.0/0.0/16_019/0000827 ERDF project Plants as a tool for sustainable global development

Odkazy

PubMed 31312850
PubMed Central PMC6763527
DOI 10.1007/s00122-019-03394-1
PII: 10.1007/s00122-019-03394-1
Knihovny.cz E-zdroje

Using COS markers, the study reveals homeologous relationships between tetraploid Agropyron cristatum and bread wheat to support alien introgression breeding of wheat. Crested wheatgrass (Agropyron cristatum L. Gaertn.) is a wild relative of wheat that possesses many genes that are potentially useful in wheat improvement. The species comprises a complex of diploid, tetraploid and hexaploid forms. In this study, wheat-A. cristatum chromosome, telosome and translocation lines were used to characterize syntenic relationships between tetraploid A. cristatum and bread wheat. Prior to mapping COS markers, the cytogenetic stock lines were characterized for fertility and by FISH and GISH for karyotype stability. Out of 328 COS markers selected for the study, 279 consistently amplified products in tetraploid A. cristatum, and, out of these, 139 were polymorphic between tetraploid crested wheatgrass and wheat. Sixty-nine markers were found to be suitable for the detection of tetraploid A. cristatum chromosomes 1P-6P in wheat, ranging from 6 to 17 markers per chromosome. BLASTn of the source ESTs resulted in significant hits for 67 markers on the wheat pseudomolecules. Generally, COS markers of the same homeologous group were detected on similar arms in both Agropyron and wheat. However, some intragenomic duplications and chromosome rearrangements were detected in tetraploid A. cristatum. These results provide new insights into the structure and evolution of the tetraploid A. cristatum genome and will facilitate the exploitation of the wild species for introgression breeding of bread wheat.

Zobrazit více v PubMed

Moser L. E., Buxton D. R., Casler M. D., Asay K. H., Jensen K. B. Cool-Season Forage Grasses. 1996. Wheatgrasses.

Asay KH, Johnson DA. Genetic variances for forage yield in crested wheatgrass at six levels of irrigation. Crop Sci. 1990;30:79–82. doi: 10.2135/cropsci1990.0011183X003000010018x. DOI

Brettell RIS, Banks PM, Cauderon Y, et al. A single wheatgrass chromosome reduces the concentration of barley yellow dwarf virus in wheat. Ann Appl Biol. 1988;113:599–603. doi: 10.1111/j.1744-7348.1988.tb03337.x. DOI

Burt C, Nicholson P. Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor Appl Genet. 2011;123:1387–1400. doi: 10.1007/s00122-011-1674-9. PubMed DOI

Cabrera A, Martin A, Barro F. In-situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res. 2002;10:49–54. doi: 10.1023/a:1014270227360. PubMed DOI

Cauderon Y, Rhind JM. Effect on wheat of an Agropyron chromosome carrying stripe rust resistance. Ann Amelior Plantes. 1976;26:745–749.

Chen Q, Jahier J, Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Gaertn. C R Acad Sci Ser III Sci Vie Life Sci. 1989;308:425–430.

Chen Q, Lu YL, Jahier J, Bernard M. Identification of wheat-Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor Appl Genet. 1994;89:70–75. doi: 10.1007/BF00226985. PubMed DOI

Cheng D, Jin-Peng Z, Xiao-Yang WU, et al. Development of EST markers specific to Agropyron cristatum chromosome 6P in common wheat background. Acta Agron Sin. 2012;38:1791–1801. doi: 10.3724/SP.J.1006.2012.01791. DOI

Cherif-Mouaki S, Said M, Alvarez JB, Cabrera A. Sub-arm location of prolamin and EST-SSR loci on chromosome 1H(ch) from Hordeum chilense. Euphytica. 2011;178:63–69. doi: 10.1007/s10681-010-0268-y. DOI

Choi H-W, Koo D-H, Bang K-H, et al. FISH and GISH analysis of the genomic relationships among species. Genes Genom. 2009;31:99–105. doi: 10.1007/BF03191143. DOI

Consortium (IWGSC) TIWGS, Investigators IR principal, Appels R et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361:eaar7191. 10.1126/science.aar7191 PubMed

Copete A, Cabrera A. Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica. 2017;213:189. doi: 10.1007/s10681-017-1981-6. DOI

Copete A, Moreno R, Cabrera A. Characterization of a world collection of Agropyron cristatum accessions. Genet Resour Crop Evol. 2018;65:1455–1469. doi: 10.1007/s10722-018-0630-9. DOI

Danilova TV, Friebe B, Gill BS. Single-copy gene fluorescence in situ hybridization and genome analysis: Acc-2 loci mark evolutionary chromosomal rearrangements in wheat. Chromosoma. 2012;121:597–611. doi: 10.1007/s00412-012-0384-7. PubMed DOI

Devos KM, Atkinson MD, Chinoy CN, et al. Chromosomal rearrangements in the rye genome relative to that of wheat. Theor Appl Genet. 1993;85:673–680. doi: 10.1007/BF00225004. PubMed DOI

Dewey DR. Salt tolerance of twenty-five strains of Agropyron. Crop Sci. 1960;52:631–635. doi: 10.2134/agronj1960.00021962005200110006x. DOI

Dewey DR. Breeding crested wheatgrass for salt tolerance. Crop Sci. 1962;2:403–407. doi: 10.2135/cropsci1962.0011183X000200050012x. DOI

Dewey DR. The genomic system of classification as a guide to intergeneric hybridization with the perennial triticeae. In: Gustafson JP, editor. Gene manipulation in plant improvement. Boston: Springer; 1984. pp. 209–279.

Dewey DR, Asay KH. Cytogenetic and taxonomic relationships among three diploid crested wheatgrasses. Crop Sci. 1982;22:645–650. doi: 10.2135/cropsci1982.0011183X002200030052x. DOI

Dong YS, Zhou RH, Xu SJ, et al. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas. 1992;116:175–178. doi: 10.1111/j.1601-5223.1992.tb00224.x. DOI

Endo TR. Gametocidal genes. In: Molnár-Láng M, Ceoloni C, Doležel J, editors. Alien introgression in wheat: cytogenetics, molecular biology, and genomics. Cham: Springer; 2015. pp. 121–131.

Feuillet C, Langridge P, Waugh R. Cereal breeding takes a walk on the wild side. Trends Genet. 2008;24:24–32. doi: 10.1016/j.tig.2007.11.001. PubMed DOI

Forster BP, Gorham J, Miller TE. Salt tolerance of an amphiploid between Triticum aestivum and Agropyron junceum. Plant Breed. 1987;98:1–8. doi: 10.1111/j.1439-0523.1987.tb01083.x. DOI

Friebe B, Zeller FJ, Mukai Y, et al. Characterization of rust-resistant wheat-Agropyron intermedium derivatives by C-banding, in situ hybridization and isozyme analysis. Theor Appl Genet. 1992;83:775–782. doi: 10.1007/BF00226697. PubMed DOI

Friebe B, Jiang J, Raupp WJ, et al. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. DOI

Fukui K, Kamisugi Y, Sakai F. Physical mapping of 5S rDNA loci by direct-cloned biotinylated probes in barley chromosomes. Genome. 1994;37:105–111. doi: 10.1139/g94-013. PubMed DOI

Gaál E, Valárik M, Molnár I, et al. Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and T. elongatum genomes. PLoS ONE. 2018;13:e0208840. doi: 10.1371/journal.pone.0208840. PubMed DOI PMC

Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979;7:1869–1885. doi: 10.1093/nar/7.7.1869. PubMed DOI PMC

Gong W, Gong W, Han R, et al. Chromosome arm-specific markers from Aegilops searsii permits targeted introgression. Biologia. 2016;71:87–92. doi: 10.1515/biolog-2016-0003. DOI

Gong W, Han R, Li H, et al. Agronomic traits and molecular marker identification of wheat-Aegilops caudata addition lines. Front Plant Sci. 2017;8:1743. doi: 10.3389/fpls.2017.01743. PubMed DOI PMC

Han F, Fedak G, Guo W, Liu B. Rapid and repeatable elimination of a parental genome-specific DNA repeat (pGc1R-1a) in newly synthesized wheat allopolyploids. Genetics. 2005;170:1239–1245. doi: 10.1534/genetics.104.039263. PubMed DOI PMC

Han H, Bai L, Su J, et al. Genetic rearrangements of six wheat-Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE. 2014;9:e91066. doi: 10.1371/journal.pone.0091066. PubMed DOI PMC

Han H, Liu W, Lu Y, et al. Isolation and application of P genome-specific DNA sequences of Agropyron Gaertn. in Triticeae. Planta. 2017;245:425–437. doi: 10.1007/s00425-016-2616-1. PubMed DOI

Howard T, Rejab NA, Griffiths S, et al. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot. 2011;62:2217–2228. doi: 10.1093/jxb/erq423. PubMed DOI PMC

Kato A, Lamb JC, Birchler JA. Chromosome painting using repetitive DNA sequences as probes for somatic chromosome identification in maize. Proc Natl Acad Sci USA. 2004;101:13554–13559. doi: 10.1073/pnas.0403659101. PubMed DOI PMC

Kato A, Albert PS, Vega JM, Birchler JA. Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem. 2006;81:71–78. doi: 10.1080/10520290600643677. PubMed DOI

Knott DR. The effect on wheat of an Agropyron chromosome carrying rust resistance. Can J Genet Cytol. 1964;6:500–507. doi: 10.1139/g64-064. PubMed DOI

Knott DR. Translocations involving Triticum chromosomes and Agropyron chromosomes carrying rust resistance. Can J Genet Cytol. 1968;10:695–696. doi: 10.1139/g68-087. PubMed DOI

Le HT, Armstrong KC, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Rep. 1989;7:150–158. doi: 10.1007/BF02669631. DOI

Li L, Li X, Li P, et al. Establishment of wheat-Agropyron cristatum alien addition lines. I. Cytology of F_(3), F_(2) BC_(1), BC_(4), and BC_(3) F_(1) progenies. Acta Genet Sin. 1997;24:154–159.

Li L, Yang X, Zhou R, et al. Establishment of wheat-Agropyron cristatum alien addition lines: II. Identification of alien chromosomes and analysis of development approaches. Acta Genet Sin. 1998;25:538–544.

Li S-F, Zhou H-B, Li L-H, et al. Isolation and characterization of high-molecular-weight glutenin subunit genes in Agropyron cristatum. Acta Agron Sin. 2007;33:63–69.

Li Q, Lu Y, Pan C, et al. Characterization of a novel wheat-Agropyron cristatum 2P disomic addition line with powdery mildew resistance. Crop Sci. 2016;56:2390–2400. doi: 10.2135/cropsci2015.10.0638. DOI

Limin AE, Fowler DB. Cold hardiness of forage grasses grown on the Canadian prairies. Can J Plant Sci. 1987;67:1111–1115. doi: 10.4141/cjps87-150. DOI

Limin AE, Fowler DB. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome. 1990;33:581–584. doi: 10.1139/g90-085. DOI

Linc G, Gaál E, Molnár I, et al. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE. 2017;12:e0173623. doi: 10.1371/journal.pone.0173623. PubMed DOI PMC

Littlejohn GM (1988) Salt tolerance of amphiploids and derivatives of crosses between wheat and wild Thinopyrum species. In: 7th Int wheat genet symp, Cambridge, pp 845–849

Liu W, Liu W, Wu J, et al. Analysis of genetic diversity in natural populations of Psathyrostachys huashanica Keng using microsatellite (SSR) markers. Agric Sci China. 2010;9:463–471. doi: 10.1016/S1671-2927(09)60118-8. DOI

Löve Á. Generic evolution of the wheatgrasses. Biol Zbl. 1982;101:199–212.

Löve A. Conspectus of the Triticeae. Feddes Repert. 1984;95:425–521. doi: 10.1002/fedr.4910950702. DOI

Lu M, Lu Y, Li H, et al. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE. 2016;11:e0159577. doi: 10.1371/journal.pone.0159577. PubMed DOI PMC

Luan Y, Wang X, Liu W, et al. Production and identification of wheat-Agropyron cristatum 6P translocation lines. Planta. 2010;232:501–510. doi: 10.1007/s00425-010-1187-9. PubMed DOI

Ma X-F, Fang P, Gustafson JP. Polyploidization-induced genome variation in triticale. Genome. 2004;47:839–848. doi: 10.1139/g04-051. PubMed DOI

Martín A, Cabrera A, Esteban E, et al. A fertile amphiploid between diploid wheat (Triticum tauschii) and crested wheat grass (Agropyron cristatum) Genome. 1999;42:519–524. doi: 10.1139/gen-42-3-519. PubMed DOI

Martín AC, Rey M-D, Shaw P, Moore G. Dual effect of the wheat Ph1 locus on chromosome synapsis and crossover. Chromosoma. 2017;126:669–680. doi: 10.1007/s00412-017-0630-0. PubMed DOI PMC

McGuire PE, Dvořák J. High salt-tolerance potential in wheatgrasses. Crop Sci. 1981;21:702–705. doi: 10.2135/cropsci1981.0011183X002100050018x. DOI

Miller TE, Reader SM, Chapman V (1982) The addition of Hordeum chilense chromosomes to wheat. In: Broertjes C (ed) Proceedings of international symposium on Eucarpia on induced variability in plant breeding, Wageningen, Pudoc, pp 79–81

Molnár I, Šimková H, Leverington-Waite M, et al. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and Rice as revealed by COS markers. PLoS ONE. 2013;8:e70844. doi: 10.1371/journal.pone.0070844. PubMed DOI PMC

Molnár I, Kubaláková M, Šimková H, et al. Flow cytometric chromosome sorting from diploid progenitors of bread wheat, T. urartu, A. speltoides and A. tauschii. Theor Appl Genet. 2014;127:1091–1104. doi: 10.1007/s00122-014-2282-2. PubMed DOI

Molnár I, Vrána J, Burešová V, et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. doi: 10.1111/tpj.13266. PubMed DOI

Molnár-Láng M, Novotny C, Linc G, Naoy ED. Changes in the meiotic pairing behaviour of a winter wheat-winter barley hybrid maintained for a long term in tissue culture, and tracing the barley chromatin in the progeny using GISH and SSR markers. Plant Breed. 2005;124:247–252. doi: 10.1111/j.1439-0523.2005.01097.x. DOI

Nagy ED, Molnár I, Schneider A, et al. Characterization of chromosome-specific S-SAP markers and their use in studying genetic diversity in Aegilops species. Genome. 2006;49:289–296. doi: 10.1139/g05-109. PubMed DOI

Nasuda S, Friebe B, Gill BS. Gametocidal genes induce chromosome breakage in the interphase prior to the first mitotic cell division of the male gametophyte in wheat. Genetics. 1998;149:1115–1124. PubMed PMC

Ochoa V, Madrid E, Said M, et al. Molecular and cytogenetic characterization of a common wheat-Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica. 2015;201:89–95. doi: 10.1007/s10681-014-1190-5. DOI

Parida SK, Kumar KAR, Dalal V, et al. Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet. 2006;112:808–817. doi: 10.1007/s00122-005-0182-1. PubMed DOI

Perničková K, Koláčková V, Lukaszewski AJ, et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int J Mol Sci. 2019;20:1448. doi: 10.3390/ijms20061448. PubMed DOI PMC

Quraishi UM, Abrouk M, Bolot S, et al. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genom. 2009;9:473–484. doi: 10.1007/s10142-009-0129-8. PubMed DOI

Rayburn AL, Gill BS. Use of biotin-labeled probes to map specific DNA sequences on wheat chromosomes. J Hered. 1985;76:78–81. doi: 10.1093/oxfordjournals.jhered.a110049. DOI

Said M, Cabrera A. A physical map of chromosome 4Hch from H. chilense containing SSR, STS and EST-SSR molecular markers. Euphytica. 2009;167:253–259. doi: 10.1007/s10681-009-9895-6. DOI

Said M, Recio R, Cabrera A. Development and characterisation of structural changes in chromosome 3Hch from Hordeum chilense in common wheat and their use in physical mapping. Euphytica. 2012;188:429–440. doi: 10.1007/s10681-012-0712-2. DOI

Said M, Hřibová E, Danilova TV, et al. The Agropyron cristatum karyotype, chromosome structure and cross-genome homeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor Appl Genet. 2018;131:2213–2227. doi: 10.1007/s00122-018-3148-9. PubMed DOI PMC

Said M, Kubaláková M, Karafiátová M, et al. Dissecting the complex genome of Agropyron cristatum by chromosome flow sorting. Plant Genome. 2019;12:180096. doi: 10.3835/plantgenome2018.12.0096. PubMed DOI

Schneider A, Linc G, Molnár I, Molnár-Láng M. Molecular cytogenetic characterization of Aegilops biuncialis and its use for the identification of 5 derived wheat-Aegilops biuncialis disomic addition lines. Genome. 2005;48:1070–1082. doi: 10.1139/g05-062. PubMed DOI

Schulz-Schaeffer J, Allderdice PW, Creel GC. Segmental allopolyploidy in tetraploid and hexaploid Agropyron species of the crested wheatgrass complex (section Agropyron) Crop Sci. 1963;3:525–530. doi: 10.2135/cropsci1963.0011183X000300060021x. DOI

Schwarzacher T, Heslop-Harrison P. Practical in situ hybridization. 1. Oxford: Bios Scientific Pub Ltd; 2000.

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ localization of parental genomes in a wide hybrid. Ann Bot. 1989;64:315–324. doi: 10.1093/oxfordjournals.aob.a087847. DOI

Sharma HC, Gill BS, Uyemoto JK. High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. J Phytopathol. 1984;110:143–147. doi: 10.1111/j.1439-0434.1984.tb03402.x. DOI

Shi F, Liu K-F, Endo TR, Wang D-W. Inducing rye 1R chromosome structural changes in common wheat cv. Chinese spring by the gametocidal chromosome 2C of Aegilops cylindrica. Acta Genet Sin. 2005;32:487–494. PubMed

Shukle RH, Lampe DJ, Lister RM, Foster JE. Aphid feeding behavior: relationship to barley yellow dwarf virus resistance in Agropyron species. Phytopathology. 1987;77:725–729. doi: 10.1094/Phyto-77-725. DOI

Soliman MH, Cabrera A, Sillero JC, Rubiales D. Genomic constitution and expression of disease resistance in Agropyron cristatum × durum wheat derivatives. Breed Sci. 2007;57:17–21. doi: 10.1270/jsbbs.57.17. DOI

Song L, Jiang L, Han H, et al. Efficient induction of wheat-Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE. 2013;8:e69501. doi: 10.1371/journal.pone.0069501. PubMed DOI PMC

Szakács E, Molnár-Láng M. Molecular cytogenetic evaluation of chromosome instability in Triticum aestivum–Secale cereale disomic addition lines. J Appl Genet. 2010;51:149–152. doi: 10.1007/BF03195723. PubMed DOI

Taketa S, Kato J, Takeda K. High crossability of wild barley (Hordeum spontaneum C. Koch) with bread wheat and the differential elimination of barley chromosomes in the hybrids. Theor Appl Genet. 1995;91:1203–1209. doi: 10.1007/BF00220930. PubMed DOI

Tanksley SD, McCouch SR. Seed banks and molecular maps: unlocking genetic potential from the wild. Science. 1997;277:1063–1066. doi: 10.1126/science.277.5329.1063. PubMed DOI

Taylor RJ, McCoy GA. Proposed origin of tetraploid species of crested wheatgrass based on chromatographic and karyotypic analyses. Am J Bot. 1973;60:576–583. doi: 10.2307/2441382. DOI

Triebe B, Mukai Y, Dhaliwal HS, et al. Identification of alien chromatin specifying resistance to wheat streak mosaic and greenbug in wheat germ plasm by C-banding and in situ hybridization. Theor Appl Genet. 1991;81:381–389. doi: 10.1007/BF00228680. PubMed DOI

Vogel KP, Arumuganathan K, Jensen KB. Nuclear DNA content of perennial grasses of the triticeae. Crop Sci. 1999;39:661–667. doi: 10.2135/cropsci1999.0011183X003900020009x. DOI

Whelan EDP. Transmission of a chromosome from decaploid Agropyron elongatum that confers resistance to the wheat curl mite in common wheat. Genome. 1988;30:293–298. doi: 10.1139/g88-051. DOI

Wu J, Yang X, Wang H, et al. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor Appl Genet. 2006;114:13–20. doi: 10.1007/s00122-006-0405-0. PubMed DOI

Yang C-T, Fan X, Wang X-L, et al. Karyotype analysis of Agropyron cristatum (L.) Gaertner. Caryologia. 2014;67:234–237. doi: 10.1080/0144235X.2014.974351. DOI

Ye X, Lu Y, Liu W, et al. The effects of chromosome 6P on fertile tiller number of wheat as revealed in wheat-Agropyron cristatum chromosome 5A/6P translocation lines. Theor Appl Genet. 2015;128:797–811. doi: 10.1007/s00122-015-2466-4. PubMed DOI

Yu J, Wang J, Lin W, et al. The genomes of Oryza sativa: a history of duplications. PLoS Biol. 2005;3:e38. doi: 10.1371/journal.pbio.0030038. PubMed DOI PMC

Zhang H, Jia J, Gale MD, Devos KM. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet. 1998;96:69–75. doi: 10.1007/s001220050710. DOI

Zhang H, Bian Y, Gou X, et al. Intrinsic karyotype stability and gene copy number variations may have laid the foundation for tetraploid wheat formation. PNAS. 2013;110:19466–19471. doi: 10.1073/pnas.1319598110. PubMed DOI PMC

Zhang J, Zhang J, Liu W, et al. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor Appl Genet. 2015;128:1827–1837. doi: 10.1007/s00122-015-2550-9. PubMed DOI

Zhang Z, Song L, Han H, et al. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int J Mol Sci. 2017;18:2403. doi: 10.3390/ijms18112403. PubMed DOI PMC

Zhao Y, Xie J, Dou Q, et al. Diversification of the P genome among Agropyron Gaertn. (Poaceae) species detected by FISH. Comp Cytogenet. 2017;11:495–509. doi: 10.3897/CompCytogen.v11i3.13124. PubMed DOI PMC

Zhou S, Zhang J, Che Y, et al. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660 K SNP array reveals a homeologous relationship with the wheat genome. Plant Biotechnol J. 2018;16:818–827. doi: 10.1111/pbi.12831. PubMed DOI PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

A linkage map of Aegilops biuncialis reveals significant genomic rearrangements compared to bread wheat

. 2025 Mar ; 18 (1) : e70009.

Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination

Gametocidal genes: from a discovery to the application in wheat breeding

. 2024 ; 15 () : 1396553. [epub] 20240422

Chromosome genomics facilitates the marker development and selection of wheat-Aegilops biuncialis addition, substitution and translocation lines

. 2023 Nov 22 ; 13 (1) : 20499. [epub] 20231122

Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes

. 2022 ; 13 () : 1017958. [epub] 20221003

Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers

. 2022 Mar 16 ; 23 (6) : . [epub] 20220316

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace