Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30540828
PubMed Central
PMC6291125
DOI
10.1371/journal.pone.0208840
PII: PONE-D-18-22813
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- genetické markery MeSH
- genom rostlinný * MeSH
- genová přestavba * MeSH
- mapování chromozomů * MeSH
- molekulární evoluce * MeSH
- pšenice genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- genetické markery MeSH
Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.
Zobrazit více v PubMed
Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996; 91(1): 59–87. 10.1007/BF00035277 DOI
Fedak G. Alien species as sources of physiological traits for wheat improvement. Euphytica. 1985; 34(3): 673–680. 10.1007/BF00035403 DOI
Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006; 57(5): 1059–1078. 10.1093/jxb/erj124 PubMed DOI
Murphy KM, Hoagland LA, Reeves PG, Baik BK, Jones SS. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew Agric Food Syst. 2009; 24(4): 285 10.1017/S1742170509990159 DOI
Ardalani S, Mirzaghaderi G, Badakhshan H. A Robertsonian translocation from Thinopyrum bessarabicum into bread wheat confers high iron and zinc contents. Plant Breed. 2016; 135(3): 286–290. 10.1111/pbr.12359 DOI
Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. Agropyron elongatum HMW-glutenins have a potential to improve wheat end-product quality through targeted chromosome introgression. J Cereal Sci. 2009; 50(3): 358–363. 10.1016/j.jcs.2009.06.012 DOI
Friebe B, Jiang J, Knott DR, Gill BS. Compensation indices of radiation-induced wheat-Agropyron elongatum translocations conferring resistance to leaf rust and stem rust. Crop Sci. 1994; 34(2): 400–404. 10.2135/cropsci1994.0011183X003400020018x DOI
Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS. Molecular cytogenetic analysis of Agropyron elongatum chromatin in wheat germplasm specifying resistance to wheat streak mosaic virus. Theor Appl Genet. 1993; 86(1): 41–8. 10.1007/BF00223806 PubMed DOI
Sharma HC, Gill BS, Uyemoto JK. High levels of resistance in Agropyron species to barley yellow dwarf and wheat streak mosaic viruses. Phytopathology. 1984; 110(84): 143–147. 10.1111/j.1439-0434.1984.tb03402.x DOI
Li H, Wang X. Thinopyrum ponticum and Th. intermedium: the promising source of resistance to fungal and viral diseases of wheat. J Genet Genomics. 2009; 36(9): 557–565. 10.1016/S1673-8527(08)60147-2 PubMed DOI
Cai X, Jones SS, Murray TD. Characterization of an Agropyron elongatum chromosome conferring resistance to cephalosporium stripe in common wheat. Genome. 1996; 39(1): 56–62. 10.1139/g96-008 PubMed DOI
Jauhar PP, Peterson TS, Xu SS. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome. 2009; 52(5): 467–483. 10.1139/g09-014 PubMed DOI
Anderson JM, Bucholtz DL, Sardesai N, Santini JB, Gyulai G, Williams CE, et al. Potential new genes for resistance to Mycosphaerella graminicola identified in Triticum aestivum × Lophopyrum elongatum disomic substitution lines. Euphytica. 2010; 172(2): 251–262. 10.1007/s10681-009-0061-y DOI
Omielan JA, Epstein E, Dvorak J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant Lophopyrum elongatum. Genome. 1991; 34(6): 961–974. 10.1139/g91-149 DOI
Monneveux P, Reynolds MP, González Aguilar J, Singh RP. Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed. 2003; 122(5): 379–384. 10.1046/j.1439-0523.2003.00856.x DOI
Reynolds MP, Calderini DF, Condon AG, Rajaram S. Physiological basis of yield gains in wheat associated with the LR19 translocation from Agropyron elongatum. Euphytica. 2001; 119(1): 139–144. 10.1023/a:1017521800795 DOI
Lammer D. A single chromosome addition from Thinopyrum elongatum confers a polycarpic, perennial habit to annual wheat. J Exp Bot. 2004; 55(403): 1715–1720. 10.1093/jxb/erh209 PubMed DOI
Zhang H, Jia J, Gale MD, Devos KM. Relationships between the chromosomes of Aegilops umbellulata and wheat. Theor Appl Genet. 1998; 96(1): 69–75. 10.1007/s001220050710 DOI
Gale MD, Devos KM. Comparative genetics in the grasses. Plant Mol Biol. 1997; 35(1–2): 3–15. 10.1073/pnas.95.5.1971 PubMed DOI
Lukaszewski AJ. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the Ph1 gene in wheat and triticale. Theor Appl Genet. 1995; 90(5): 714–719. 10.1007/BF00222138 PubMed DOI
Rey E, Molnár I, Doležel J. Genomics of wild relatives and alien introgressions In: Molnár-Láng M, Ceoloni C, Doležel J, editors. Alien Introgression in Wheat. Springer International Publishing; 2015. p. 347–381. 10.1007/978-3-319-23494-6 DOI
Le HT, Armstrong KC, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Report. 1989; 7(2): 150–158. 10.1007/BF02669631 DOI
Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS. In situ localization of parental genomes in a wide hybrid. Ann Bot. 1989; 64(3): 315–324.
Rayburn A, Gill B. Use of repeated DNA sequences as cytological markers. Am J Bot. 1987; 74(4): 574–580. 10.1002/j.1537-2197.1987.tb08678.x DOI
Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome. 1997; 40(5): 589–593. 10.1139/g97-077 PubMed DOI
Linc G, Sepsi A, Molnár-Láng M. A FISH karyotype to study chromosome polymorphisms for the Elytrigia elongata E genome. Cytogenet Genome Res. 2012; 136(2): 138–144. 10.1159/000334835 PubMed DOI
Gupta PK, Varshney RK, Sharma PC, Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breed. 1999; 118(5): 369–390. 10.1046/J.1439-0523.1999.00401.X DOI
You M, Li B, Tian Z, Hang Z, Liu S, Al E. Development of specific SSR marker for Ee-genome of Thinopyrum sp. by using wheat microsatellites. J Agric Biotechnol. 2003; 11(6): 577–581.
Wang RR, Larson SR, Jensen KB. Analyses of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers. Genome. 2010; 53(12): 1083–1089. 10.1139/G10-088 PubMed DOI
Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, et al. EST-derived SSR markers from defined regions of the wheat genome to identify Lophopyrum elongatum specific loci. Genome. 2005; 48(5): 811–822. 10.1139/g05-040 PubMed DOI
Xu GH, Su WY, Shu YJ, Cong WW, Wu L, Guo CH. RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the Thinopyrum elongatum E (Poaceae) genome. Genet Mol Res. 2012; 11(2): 1741–51. 10.4238/2012.June.29.7 PubMed DOI
Li XM, Lee BS, Mammadov AC, Koo BC, Mott IW, Wang RR. CAPS markers specific to Eb, Ee, and R genomes in the tribe Triticeae. Genome. 2007; 50(4): 400–411. 10.1139/g07-025 PubMed DOI
Chen S, Huang Z, Dai Y, Qin S, Gao Y, Zhang L, et al. The development of 7E chromosome-specific molecular markers for Thinopyrum elongatum based on SLAF-seq technology. PLoS One. 2013; 8(6): e65122 10.1371/journal.pone.0065122 PubMed DOI PMC
Lou H, Dong L, Zhang K, Wang D-W, Zhao M, Li Y, et al. High-throughput mining of E-genome-specific SNPs for characterizing Thinopyrum elongatum introgressions in common wheat. Mol Ecol Resour. 2017; 17(6): 1318–1329. 10.1111/1755-0998.12659 PubMed DOI
Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, et al. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics. 2009; 9(4): 473–484. 10.1007/s10142-009-0129-8 PubMed DOI
Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, et al. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J Exp Bot. 2011; 62(6): 2217–2228. 10.1093/jxb/erq423 PubMed DOI PMC
Yu J, Wang J, Lin W, Li S, Li H, Zhou J, et al. The genomes of Oryza sativa: A history of duplications. PLoS Biol. 2005; 3(2): 0266–0281. 10.1371/journal.pbio.0030038 PubMed DOI PMC
Parida SK, Anand Raj Kumar K, Dalal V, Singh NK, Mohapatra T. Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet. 2006; 112(5): 808–817. 10.1007/s00122-005-0182-1 PubMed DOI
Burt C, Nicholson P. Exploiting co-linearity among grass species to map the Aegilops ventricosa-derived Pch1 eyespot resistance in wheat and establish its relationship to Pch2. Theor Appl Genet. 2011; 123(8): 1387–1400. 10.1007/s00122-011-1674-9 PubMed DOI
Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, et al. Syntenic relationships between the U and M genomes of Aegilops, wheat and the model species Brachypodium and rice as revealed by COS markers. PLoS One. 2013; 8(8): e70844 10.1371/journal.pone.0070844 PubMed DOI PMC
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016; 88(3): 452–467. 10.1111/tpj.13266 PubMed DOI
Linc G, Gaál E, Molnár I, Icsó D, Badaeva E, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One. 2017; 12(3): 1–18. 10.1371/journal.pone.0173623 PubMed DOI PMC
Dvorak J, Knott D. Disomic and ditelosomic additions of diploid Agropyron elongatum chromosomes to Triticum aestivum. Can J Genet Cytol. 1974; 16(2): 399–417. 10.1139/g74-043 DOI
Linc G, Friebe BR, Kynast RG, Molnár-Láng M, Kőszegi B, Sutka J, et al. Molecular cytogenetic analysis of Aegilops cylindrica Host. Genome. 1999; 42(3): 497–503. 10.1139/g98-151 PubMed DOI
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome. 1995; 38(3): 479–486. 10.1139/g95-063 PubMed DOI
Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB. A molecular description of telomeric heterochromatin in Secale species. Cell. 1980; 19(2): 545–560. 10.1016/0092-8674(80)90529-2 PubMed DOI
Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979; 7(7): 1869–1886. 10.1093/nar/7.7.1869 PubMed DOI PMC
Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Burton R. Addition of Aegilops U and M chromosomes affects protein and dietary fiber content of wholemeal wheat flour. Front Plant Sci. 2017; 8(1529): 1–18. 10.3389/fpls.2017.01529 PubMed DOI PMC
Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol. 2000; 7(1–2): 203–214. 10.1089/10665270050081478 PubMed DOI
Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018; 361(6403). 10.1126/science.aar7191 PubMed DOI
Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. 1997; 25(17): 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC
Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics. 2009; 10(562). 10.1186/1471-2164-10-562 PubMed DOI PMC
Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell. 2002; 14(7): 1457–1467. 10.1105/tpc.010479 PubMed DOI PMC
Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, et al. Identification of COS markers in the Pinaceae. Tree Genet Genomes. 2009; 5(1): 247–255. 10.1007/s11295-008-0189-2 DOI
Copete A, Cabrera A. Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica. 2017; 213(8): 1–9. 10.1007/s10681-017-1981-6 DOI
Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014; 345(6194). 10.1126/science.1250092 PubMed DOI
Dvorak J, Edge M, Ross K. On the evolution of the adaptation of Lophopyrum elongatum to growth in saline environments. Proc Natl Acad Sci USA. 1988; 85(11): 3805–3809. 10.1073/pnas.85.11.3805 PubMed DOI PMC
Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat (Triticum aestivum)-Lophopyrum genetic lines and tagging of the alien chromatin by PCR markers. Theor Appl Genet. 2004; 108(5): 808–813. 10.1007/s00122-003-1492-9 PubMed DOI
Gou L, Hattori J, Fedak G, Balcerzak M, Sharpe A, Visendi P, et al. Development and validation of Thinopyrum elongatum-expressed molecular markers specific for the long arm of chromosome 7E. Crop Sci. 2016; 56(1): 354–364. 10.2135/cropsci2015.03.0184 DOI
Schachermayr GM, Messmer MM, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the Agropyron elongatum-derived leaf rust resistance gene Lr24 in wheat. Theor Appl Genet. 1995; 90(7–8): 982–90. 10.1007/BF00222911 PubMed DOI
Shen X, Ohm H. Fusarium head blight resistance derived from Lophopyrum elongatum chromosome 7E and its augmentation with Fhb1 in wheat. Plant Breed. 2006; 125(5): 424–429. 10.1111/j.1439-0523.2006.01274.x DOI
Talbert LE, Bruckner PL, Smith LY, Sears R, Martin TJ. Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet. 1996; 93(3): 463–467. 10.1007/BF00223191 PubMed DOI
Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, et al. Construction of Agropyron Gaertn. genetic linkage maps using a wheat 660K SNP array reveals a homoeologous relationship with the wheat genome. Plant Biotechnol J. 2018; 16(3): 818–827. 10.1111/pbi.12831 PubMed DOI PMC
Hu LJ, Liu C, Zeng ZX, Li GR, Song XJ, Yang ZJ. Genomic rearrangement between wheat and Thinopyrum elongatum revealed by mapped functional molecular markers. Genes Genomics. 2012; 34(1): 67–75. 10.1007/s13258-011-0153-7 DOI
Anderson JA, Sorrells ME, Tanksley SD, Breeding P, Hall E. Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet. 1992; 83(8): 1035–1043. 10.1007/BF00232969 PubMed DOI
Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011; 23(4): 1249–1263. 10.1105/tpc.110.082537 PubMed DOI PMC
Salse J, Abrouk M, Guilhot N, Courcelle E, Faraut T, Waugh R, et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution. Proc Natl Acad Sci USA. 2009; 106(35): 14908–14913. 10.1073/pnas.0902350106 PubMed DOI PMC
Daron J, Glover NM, Pingault L, Theil S, Jamilloux V, Paux E, et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 2014; 15(546): 1–15. 10.1186/s13059-014-0546-4 PubMed DOI PMC
Glover NM, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol. 2015; 16(188): 1–13. 10.1186/s13059-015-0754-6 PubMed DOI PMC
The wheat stem rust resistance gene Sr43 encodes an unusual protein kinase