Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes

. 2018 ; 13 (12) : e0208840. [epub] 20181212

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30540828

Thinopyrum elongatum (Host) D.R. Dewey has served as an important gene source for wheat breeding improvement for many years. The exact characterization of its chromosomes is important for the detailed analysis of prebreeding materials produced with this species. The major aim of this study was to identify and characterize new molecular markers to be used for the rapid analysis of E genome chromatin in wheat background. Sixty of the 169 conserved orthologous set (COS) markers tested on diverse wheat-Th. elongatum disomic/ditelosomic addition lines were assigned to various Th. elongatum chromosomes and will be used for marker-assisted selection. The macrosyntenic relationship between the wheat and Th. elongatum genomes was investigated using EST sequences. Several rearrangements were revealed in homoeologous chromosome groups 2, 5, 6 and 7, while chromosomes 1 and 4 were conserved. Molecular cytogenetic and marker analysis showed the presence of rearranged chromosome involved in 6ES and 2EL arms in the 6E disomic addition line. The selected chromosome arm-specific COS markers will make it possible to identify gene introgressions in breeding programmes and will also be useful in the development of new chromosome-specific markers, evolutionary analysis and gene mapping.

Zobrazit více v PubMed

Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996; 91(1): 59–87. 10.1007/BF00035277 DOI

Fedak G. Alien species as sources of physiological traits for wheat improvement. Euphytica. 1985; 34(3): 673–680. 10.1007/BF00035403 DOI

Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006; 57(5): 1059–1078. 10.1093/jxb/erj124 PubMed DOI

Murphy KM, Hoagland LA, Reeves PG, Baik BK, Jones SS. Nutritional and quality characteristics expressed in 31 perennial wheat breeding lines. Renew Agric Food Syst. 2009; 24(4): 285 10.1017/S1742170509990159 DOI

Ardalani S, Mirzaghaderi G, Badakhshan H. A Robertsonian translocation from DOI

Garg M, Tanaka H, Ishikawa N, Takata K, Yanaka M, Tsujimoto H. DOI

Friebe B, Jiang J, Knott DR, Gill BS. Compensation indices of radiation-induced wheat- DOI

Jiang J, Friebe B, Dhaliwal HS, Martin TJ, Gill BS. Molecular cytogenetic analysis of PubMed DOI

Sharma HC, Gill BS, Uyemoto JK. High levels of resistance in DOI

Li H, Wang X. PubMed DOI

Cai X, Jones SS, Murray TD. Characterization of an PubMed DOI

Jauhar PP, Peterson TS, Xu SS. Cytogenetic and molecular characterization of a durum alien disomic addition line with enhanced tolerance to Fusarium head blight. Genome. 2009; 52(5): 467–483. 10.1139/g09-014 PubMed DOI

Anderson JM, Bucholtz DL, Sardesai N, Santini JB, Gyulai G, Williams CE, et al. Potential new genes for resistance to DOI

Omielan JA, Epstein E, Dvorak J. Salt tolerance and ionic relations of wheat as affected by individual chromosomes of salt-tolerant DOI

Monneveux P, Reynolds MP, González Aguilar J, Singh RP. Effects of the DOI

Reynolds MP, Calderini DF, Condon AG, Rajaram S. Physiological basis of yield gains in wheat associated with the LR19 translocation from DOI

Lammer D. A single chromosome addition from PubMed DOI

Zhang H, Jia J, Gale MD, Devos KM. Relationships between the chromosomes of DOI

Gale MD, Devos KM. Comparative genetics in the grasses. Plant Mol Biol. 1997; 35(1–2): 3–15. 10.1073/pnas.95.5.1971 PubMed DOI

Lukaszewski AJ. Physical distribution of translocation breakpoints in homoeologous recombinants induced by the absence of the PubMed DOI

Rey E, Molnár I, Doležel J. Genomics of wild relatives and alien introgressions In: Molnár-Láng M, Ceoloni C, Doležel J, editors. Alien Introgression in Wheat. Springer International Publishing; 2015. p. 347–381. 10.1007/978-3-319-23494-6 DOI

Le HT, Armstrong KC, Miki B. Detection of rye DNA in wheat-rye hybrids and wheat translocation stocks using total genomic DNA as a probe. Plant Mol Biol Report. 1989; 7(2): 150–158. 10.1007/BF02669631 DOI

Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS.

Rayburn A, Gill B. Use of repeated DNA sequences as cytological markers. Am J Bot. 1987; 74(4): 574–580. 10.1002/j.1537-2197.1987.tb08678.x DOI

Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome. 1997; 40(5): 589–593. 10.1139/g97-077 PubMed DOI

Linc G, Sepsi A, Molnár-Láng M. A FISH karyotype to study chromosome polymorphisms for the PubMed DOI

Gupta PK, Varshney RK, Sharma PC, Ramesh B. Molecular markers and their applications in wheat breeding. Plant Breed. 1999; 118(5): 369–390. 10.1046/J.1439-0523.1999.00401.X DOI

You M, Li B, Tian Z, Hang Z, Liu S, Al E. Development of specific SSR marker for E

Wang RR, Larson SR, Jensen KB. Analyses of PubMed DOI

Mullan DJ, Platteter A, Teakle NL, Appels R, Colmer TD, Anderson JM, et al. EST-derived SSR markers from defined regions of the wheat genome to identify PubMed DOI

Xu GH, Su WY, Shu YJ, Cong WW, Wu L, Guo CH. RAPD and ISSR-assisted identification and development of three new SCAR markers specific for the PubMed DOI

Li XM, Lee BS, Mammadov AC, Koo BC, Mott IW, Wang RR. CAPS markers specific to E PubMed DOI

Chen S, Huang Z, Dai Y, Qin S, Gao Y, Zhang L, et al. The development of 7E chromosome-specific molecular markers for PubMed DOI PMC

Lou H, Dong L, Zhang K, Wang D-W, Zhao M, Li Y, et al. High-throughput mining of E-genome-specific SNPs for characterizing PubMed DOI

Quraishi UM, Abrouk M, Bolot S, Pont C, Throude M, Guilhot N, et al. Genomics in cereals: from genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct Integr Genomics. 2009; 9(4): 473–484. 10.1007/s10142-009-0129-8 PubMed DOI

Howard T, Rejab NA, Griffiths S, Leigh F, Leverington-Waite M, Simmonds J, et al. Identification of a major QTL controlling the content of B-type starch granules in PubMed DOI PMC

Yu J, Wang J, Lin W, Li S, Li H, Zhou J, et al. The genomes of PubMed DOI PMC

Parida SK, Anand Raj Kumar K, Dalal V, Singh NK, Mohapatra T. Unigene derived microsatellite markers for the cereal genomes. Theor Appl Genet. 2006; 112(5): 808–817. 10.1007/s00122-005-0182-1 PubMed DOI

Burt C, Nicholson P. Exploiting co-linearity among grass species to map the PubMed DOI

Molnár I, Šimková H, Leverington-Waite M, Goram R, Cseh A, Vrána J, et al. Syntenic relationships between the U and M genomes of PubMed DOI PMC

Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, et al. Dissecting the U, M, S and C genomes of wild relatives of bread wheat ( PubMed DOI

Linc G, Gaál E, Molnár I, Icsó D, Badaeva E, Molnár-Láng M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS One. 2017; 12(3): 1–18. 10.1371/journal.pone.0173623 PubMed DOI PMC

Dvorak J, Knott D. Disomic and ditelosomic additions of diploid DOI

Linc G, Friebe BR, Kynast RG, Molnár-Láng M, Kőszegi B, Sutka J, et al. Molecular cytogenetic analysis of PubMed DOI

Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among PubMed DOI

Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB. A molecular description of telomeric heterochromatin in PubMed DOI

Gerlach WL, Bedbrook JR. Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acids Res. 1979; 7(7): 1869–1886. 10.1093/nar/7.7.1869 PubMed DOI PMC

Rakszegi M, Molnár I, Lovegrove A, Darkó É, Farkas A, Burton R. Addition of PubMed DOI PMC

Zhang Z, Schwartz S, Wagner L, Miller W. A Greedy Algorithm for Aligning DNA Sequences. J Comput Biol. 2000; 7(1–2): 203–214. 10.1089/10665270050081478 PubMed DOI

Appels R, Eversole K, Feuillet C, Keller B, Rogers J, Stein N, et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018; 361(6403). 10.1126/science.aar7191 PubMed DOI

Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, et al. Gapped BLAST and PSI-BLAST : a new generation of protein database search programs. 1997; 25(17): 3389–3402. 10.1093/nar/25.17.3389 PubMed DOI PMC

Cabrera A, Kozik A, Howad W, Arus P, Iezzoni AF, van der Knaap E. Development and bin mapping of a Rosaceae Conserved Ortholog Set (COS) of markers. BMC Genomics. 2009; 10(562). 10.1186/1471-2164-10-562 PubMed DOI PMC

Fulton TM, Van der Hoeven R, Eannetta NT, Tanksley SD. Identification, analysis, and utilization of conserved ortholog set markers for comparative genomics in higher plants. Plant Cell. 2002; 14(7): 1457–1467. 10.1105/tpc.010479 PubMed DOI PMC

Liewlaksaneeyanawin C, Zhuang J, Tang M, Farzaneh N, Lueng G, Cullis C, et al. Identification of COS markers in the DOI

Copete A, Cabrera A. Chromosomal location of genes for resistance to powdery mildew in DOI

Marcussen T, Sandve SR, Heier L, Spannagl M, Pfeifer M, Jakobsen KS, et al. Ancient hybridizations among the ancestral genomes of bread wheat. Science. 2014; 345(6194). 10.1126/science.1250092 PubMed DOI

Dvorak J, Edge M, Ross K. On the evolution of the adaptation of PubMed DOI PMC

Shen X, Kong L, Ohm H. Fusarium head blight resistance in hexaploid wheat ( PubMed DOI

Gou L, Hattori J, Fedak G, Balcerzak M, Sharpe A, Visendi P, et al. Development and validation of DOI

Schachermayr GM, Messmer MM, Feuillet C, Winzeler H, Winzeler M, Keller B. Identification of molecular markers linked to the PubMed DOI

Shen X, Ohm H. Fusarium head blight resistance derived from DOI

Talbert LE, Bruckner PL, Smith LY, Sears R, Martin TJ. Development of PCR markers linked to resistance to wheat streak mosaic virus in wheat. Theor Appl Genet. 1996; 93(3): 463–467. 10.1007/BF00223191 PubMed DOI

Zhou S, Zhang J, Che Y, Liu W, Lu Y, Yang X, et al. Construction of PubMed DOI PMC

Hu LJ, Liu C, Zeng ZX, Li GR, Song XJ, Yang ZJ. Genomic rearrangement between wheat and DOI

Anderson JA, Sorrells ME, Tanksley SD, Breeding P, Hall E. Development of a chromosomal arm map for wheat based on RFLP markers. Theor Appl Genet. 1992; 83(8): 1035–1043. 10.1007/BF00232969 PubMed DOI

Mayer KFX, Martis M, Hedley PE, Simkova H, Liu H, Morris JA, et al. Unlocking the barley genome by chromosomal and comparative genomics. Plant Cell. 2011; 23(4): 1249–1263. 10.1105/tpc.110.082537 PubMed DOI PMC

Salse J, Abrouk M, Guilhot N, Courcelle E, Faraut T, Waugh R, et al. Reconstruction of monocotelydoneous proto-chromosomes reveals faster evolution. Proc Natl Acad Sci USA. 2009; 106(35): 14908–14913. 10.1073/pnas.0902350106 PubMed DOI PMC

Daron J, Glover NM, Pingault L, Theil S, Jamilloux V, Paux E, et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 2014; 15(546): 1–15. 10.1186/s13059-014-0546-4 PubMed DOI PMC

Glover NM, Daron J, Pingault L, Vandepoele K, Paux E, Feuillet C. Small-scale gene duplications played a major role in the recent evolution of wheat chromosome 3B. Genome Biol. 2015; 16(188): 1–13. 10.1186/s13059-015-0754-6 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...