A chromosome arm from Thinopyrum intermedium × Thinopyrum ponticum hybrid confers increased tillering and yield potential in wheat
Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38263978
PubMed Central
PMC10803699
DOI
10.1007/s11032-024-01439-y
PII: 1439
Knihovny.cz E-zdroje
- Klíčová slova
- Agropyron glael, FISH, Flow cytometric sorting, GISH, Tillering, Yield potential,
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Tiller number is a key component of wheat plant architecture having a direct impact on grain yield. Because of their viability, biotic resistance, and abiotic stress tolerance, wild relative species are a valuable gene source for increasing wheat genetic diversity, including yield potential. Agropyron glael, a perennial hybrid of Thinopyrum intermedium and Th. ponticum, was created in the 1930s. Recent genome analyses identified five evolutionarily distinct subgenomes (J, Jst, Jvs, Jr, and St), making A. glael an important gene source for transferring useful agronomical traits into wheat. During a bread wheat × A. glael crossing program, a genetically stable translocation line, WT153397, was developed. Sequential in situ hybridizations (McGISH) with J-, St-, and D-genomic DNA probes and pSc119.2, Afa family, pTa71, and (GAA)7 DNA repeats, as well as molecular markers specific for the wheat 6D chromosome, revealed the presence of a 6DS.6Jvs Robertsonian translocation in the genetic line. Field trials in low-input and high-input breeding nurseries over four growing seasons demonstrated the Agropyron chromosome arm's high compensating ability for the missing 6DL, as spike morphology and fertility of WT153397 did not differ significantly from those of wheat parents, Mv9kr1 and 'Mv Karizma.' Moreover, the introgressed 6Jvs chromosome arm significantly increased the number of productive tillers, resulting in a significantly higher grain yield potential compared to the parental wheat cultivars. The translocated chromosome could be highly purified by flow cytometric sorting due to the intense fluorescent labeling of (GAA)7 clusters on the Thinopyrum chromosome arm, providing an opportunity to use chromosome genomics to identify Agropyron gene variant(s) responsible for the tillering capacity. The translocation line WT153397 is an important genetic stock for functional genetic studies of tiller formation and useful breeding material for increasing wheat yield potential. The study also discusses the use of the translocation line in wheat breeding. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s11032-024-01439-y.
Agricultural Research Centre Field Crops Research Institute Cairo Egypt
Centre for Agricultural Research Hungarian Research Network 2462 Martonvásár Hungary
Zobrazit více v PubMed
Baker L, Grewal S, Yang C-Y, Hubbart-Edwards S, Scholefield D, Ashling S, Burridge AJ, Przewieslik-Allen AM, Wilkinson PA, King IP, King J. Exploiting the genome of Thinopyrum elongatum to expand the gene pool of hexaploid wheat. Theor Appl Genet. 2020;133:2213–2226. doi: 10.1007/s00122-020-03591-3. PubMed DOI PMC
Bilgrami SS, Ramandi HD, Shariati V, Razavi K, Tavakol E, Fakheri BA, Mahdi Nezhad N, Ghaderian M. Detection of genomic regions associated with tiller number in Iranian bread wheat under different water regimes using genome-wide association study. Sci Rep. 2020;10:14034. doi: 10.1038/s41598-020-69442-9. PubMed DOI PMC
Borrill P, Mago R, Xu T, Ford B, Williams SJ, Derkx A, Bovill WD, Hyles J, Bhatt D, Xia X, MacMillan C, White R, Buss W, Molnár I, Walkowiak S, Olsen O-A, Doležel J, Pozniak CJ, Spielmeyer W. An autoactive NB-LRR gene causes Rht13 dwarfism in wheat. Proc Nat Acad Sci USA (PNAS) 2022;119:e2209875119. doi: 10.1073/pnas.2209875119. PubMed DOI PMC
Carver F, Rayburn AL. Comparison of related wheat stocks possessing 1B or 1RS.1BL chromosomes: agronomic performance. Crop Sci. 1994;34:1505–1510. doi: 10.2135/cropsci1994.0011183X003400060017x. DOI
Ceoloni C, Kuzmanović L, Gennaro A, Forte P, Giorgi D, Rosaria Grossi M, Bitti A (2014) Genomes, chromosomes and genes of the wheatgrass genus Thinopyrum: the value of their transfer into wheat for gains in cytogenomic knowledge and sustainable breeding. Genomics of plant genetic resources: crop productivity, food security and nutritional quality, pp 333–358. 10.1007/978-94-007-7575-6_14
Chang KD, Fang S, Chang FC, Chung MC. Chromosomal conservation and sequence diversity of ribosomal RNA genes of two distant Oryza species. Genomics. 2010;96:181–190. doi: 10.1016/j.ygeno.2010.05.005. PubMed DOI
Chen Q, Conner RL, Laroche A, Thomas JB. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization. Genome. 1998;41:580–586. doi: 10.1139/g98-055. PubMed DOI
Colmer TD, Flowers TJ, Munns R. Use of wild relatives to improve salt tolerance in wheat. J Exp Bot. 2006;57:1059–1078. doi: 10.1093/jxb/erj124. PubMed DOI
Contento A, Heslop-Harrison JS, Schwarzacher T. Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res. 2005;109:34–42. doi: 10.1159/000082379. PubMed DOI
Cseh A, Yang C, Hubbart-Edwards S, Scholefield D, Ashling SS, Burridge AJ, Wilkinson PA, King IP, King J, Grewal S. Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of Thinopyrym intermedium in a wheat background. Theor Appl Genet. 2019;132:1555–1570. doi: 10.1007/s00122-019-03300-9. PubMed DOI PMC
Darwinkel A. Ear development and formation of grain yield in winter wheat. NJAS. 1980;28:156–163. doi: 10.18174/njas.v28i3.17029. DOI
Deng C, Bai L, Fu S, Yin W, Zhang Y, Chen Y, Wang RR-C, Zhang X, Han F, Hu Z. Microdissection and chromosome painting of the alien chromosome in an addition line of wheat–Thinopyrum intermedium. PLoS ONE. 2013;8:e72564. doi: 10.1371/journal.pone.0072564. PubMed DOI PMC
Dong C, Zhang L, Zhang Q, et al. Tiller Number1 encodes an ankyrin repeat protein that controls tillering in bread wheat. Nat Commun. 2023;14:836. doi: 10.1038/s41467-023-36271-z. PubMed DOI PMC
Dubcovsky J, Galvez AF, Dvořák J. Comparison of the genetic organization of the early salt-stress-response gene system in salt-tolerant Lophopyrum elongatum and salt-sensitive wheat. Theor Appl Genet. 1994;87:957–964. doi: 10.1007/BF00225790. PubMed DOI
FAOSTAT (2020) Food and Agriculture Organization of the United Nations Food and agriculture data. https://www.fao.org/faostat/en/#data/QCL. Accessed 19 Dec 2022
Friebe B, Jiang J, Raupp WJ, McIntosh RA, Gill BS. Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica. 1996;91:59–87. doi: 10.1007/BF00035277. DOI
Gaál E, Valárik M, Molnár I, Farkas A, Linc G. Identification of COS markers specific for Thinopyrum elongatum chromosomes preliminary revealed high level of macrosyntenic relationship between the wheat and Th. elongatum genomes. PLoS One. 2018;13:e0208840. doi: 10.1371/journal.pone.0208840. PubMed DOI PMC
Gao L, Koo D-H, Juliana P, et al. The Aegilops ventricosa 2NvS segment in bread wheat: cytology, genomics and breeding. Theor Appl Genet. 2021;134:529–542. doi: 10.1007/s00122-020-03712-y. PubMed DOI PMC
Garg M, Yanaka M, Tanaka H, Tsujimoto H. Introgression of useful genes from Thinopyrum intermedium to wheat for improvement of bread-making quality. Plant Breed. 2014;133:327–334. doi: 10.1111/pbr.12167. DOI
Giorgi D, Farina A, Grosso V, Gennaro A, Ceoloni C, Lucretti S. FISHIS: fluorescence in situ hybridization in suspension and chromosome flow sorting made easy. PLoS ONE. 2013;8:e57994. doi: 10.1371/journal.pone.0057994. PubMed DOI PMC
Grewal S, Yang C, Edwards SH, Scholefield D, Ashling S, Burridge AJ, King IP, King J. Characterisation of Thinopyrum bessarabicum chromosomes through genome-wide introgressions into wheat. Theor Appl Genet. 2018;131:389–406. doi: 10.1007/s00122-017-3009-y. PubMed DOI PMC
Vida G, Szunics L, Veisz O, Cséplő M. Breeding for improved gluten strength and yellow pigment content in winter durum wheat. Bulg J Crop Sci. 2022;59:16–33.
Hajjar R, Hodgkin T. The use of wild relatives in crop improvement: a survey of developments over the last 20 years. Euphytica (2007) 2007;156:1–13. doi: 10.1007/s10681-007-93630. DOI
Holden S, Bergum M, Green P, Bettgenhaeuser J, Hernández-Pinzón I, Thind A, Clare S, Russell JM, Hubbard A, Taylor J, Smoker M, Gardiner M, Civolani L, Cosenza F, Rosignoli S, Strugala R, Molnár I, Šimková H, Doležel J, Schaffrath U, Barrett M, Salvi S, Moscou MJ. A lineage-specific Exo70 is required for receptor kinase-mediated immunity in barley. Sci Adv. 2022;8:eabn7258. doi: 10.1126/sciadv.abn7258. PubMed DOI PMC
International Wheat Genome Sequencing Consortium (IWGSC), Appels R, Eversole K et al (2018) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361. 10.1126/science.aar7191 PubMed
Jiang J, Friebe B, Gill BS. Recent advances in alien gene transfer in wheat. Euphytica. 1993;73:199–212. doi: 10.1007/BF00036700. DOI
Johansson E, Henriksson T, Prieto-Linde ML, Andersson S, Ashraf R, Rahmatov M. Diverse wheat-alien introgression lines as a basis for durable resistance and quality characteristics in bread wheat. Front Plant Sci. 2020;11:1067. doi: 10.3389/fpls.2020.01067. PubMed DOI PMC
Kantarski T, Larson S, Zhang X, DeHaan L, Borevitz J, Anderson J, Poland J. Development of the first consensus genetic map of intermediate wheatgrass (Thinopyrum intermedium) using genotyping-by-sequencing. Theor Appl Genet. 2017;130:137–150. doi: 10.1007/s00122-016-2799-7. PubMed DOI
King IP, Purdie KA, Orford SE, Reader SM, Miller TE. Detection of homoeologous chiasma formation in Triticum durum x Thinopyrum bessarabicum hybrids using genomic in situ hybridization. Heredity. 1993;71:369–372. doi: 10.1038/hdy.1993.151. DOI
Kirby EJM, Jones HG. The relations between the main shoot and tillers in barley plants. J Agric Sci. 1977;88:381–389. doi: 10.1017/S0021859600034870. DOI
Kishii M, Wang RR, Tsujimoto H. GISH analysis revealed new aspect of genomic constitution of Thinopyrum intermedium. Czech J Genet Plant Breed. 2005;41:91–95. doi: 10.17221/6143-CJGPB. DOI
Kruppa K, Molnár-Láng M. Simultaneous visualization of different genomes (J, JSt and St) in a Thinopyrum intermedium × Thinopyrum ponticum synthetic hybrid (Poaceae) and in its parental species by multicolour genomic in situ hybridization (mcGISH) Comp Cytogenet. 2016;10:283–293. doi: 10.3897/COMPCYTOGEN.V10I2.7305. PubMed DOI PMC
Kruppa K, Türkösi E, Mayer M, Tóth V, Vida G, Szakács É, Molnár-Láng M. McGISH identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × Thinopyrum synthetic hybrid cross. J Appl Genet. 2016;57:427–437. doi: 10.1007/s13353-016-0343-8. PubMed DOI PMC
Kubaláková M, Macas J, Doležel J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor Appl Genet. 1997;94:758–763. doi: 10.1007/s001220050475. DOI
Kulshrestha VP, Chowdhury S. A new selection criterion for yield in wheat. Theor Appl Genet. 1987;74:275–279. doi: 10.1007/BF00289980. PubMed DOI
Kuraparthy V, Sood S, Dhaliwal HS, Chhuneja P, Gill BS. Identification and mapping of a tiller inhibition gene (tin3) in wheat. Theor Appl Genet. 2007;114:285–294. doi: 10.1007/s00122-006-0431-y. PubMed DOI
Kuzmanović L, Gennaro A, Benedettelli S, Dodd IC, Quarrie SA, Ceoloni C. Structural-functional dissection and characterization of yield-contributing traits originating from a group 7 chromosome of the wheatgrass species Thinopyrum ponticum after transfer into durum wheat. J Exp Bot. 2014;65:509–525. doi: 10.1093/jxb/ert393. PubMed DOI PMC
Li Z, Peng T, Xie Q, Han S, Tian J. Mapping of QTL for tiller number at different stages of growth in wheat using double haploid and immortalized F2 populations. J Genet. 2010;89:409–415. doi: 10.1007/s12041-010-0059-1. PubMed DOI
Linc G, Gaal E, Molnar I, Icso D, Badaeva E, Molnar-Lang M. Molecular cytogenetic (FISH) and genome analysis of diploid wheatgrasses and their phylogenetic relationship. PLoS ONE. 2017;12:1–18. doi: 10.1371/journal.pone.0173623. PubMed DOI PMC
Liu ZW, Wang RR. Genome analysis of Elytrigia caespitosa, Lophopyrum nodosum, Pseudoroegneria geniculata ssp. scythica, and Thinopyrum intermedium (Triticeae: Gramineae) Genome. 1993;36:102–111. doi: 10.1139/g93-014. PubMed DOI
Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome. 2004;47:36–45. doi: 10.1139/g03-089. PubMed DOI
Mahelka V, Kopecký D, Patová L. On the genome constitution and evolution of intermediate wheatgrass (Thinopyrum intermedium: Poaceae, Triticeae) BMC Evol Biol. 2011;11:1–17. doi: 10.1186/1471-2148-11-127. PubMed DOI PMC
Mikó P, Löschenberger F, Hiltbrunner J, Aebi R, Megyeri M, Kovács G, Molnár-Láng M, Vida G, Rakszegi M. Comparison of bread wheat varieties with different breeding origin under organic and low-input management. Euphytica. 2014;199:69–80. doi: 10.1007/s10681-014-1171-8. DOI
Molnár I, Vrána J, Burešová V, Cápal P, Farkas A, Darkó É, Cseh A, Kubaláková M, Molnár-Láng M, Doležel J. Dissecting the U, M, S and C genomes of wild relatives of bread wheat (Aegilops spp.) into chromosomes and exploring their synteny with wheat. Plant J. 2016;88:452–467. doi: 10.1111/tpj.13266. PubMed DOI
Molnár-Láng M, Linc G, Sutka J. Transfer of the recessive crossability allele kr1 from Chinese Spring into the winter wheat variety Martonvásári 9. Euphytica. 1996;90:301–305. doi: 10.1007/BF00027480. DOI
Monneveux P, Reynolds MP, Aguilar JG, Singh RP, Weber WE. Effects of the 7DL.7Ag translocation from Lophopyrum elongatum on wheat yield and related morphophysiological traits under different environments. Plant Breed. 2003;122:379–384. doi: 10.1046/j.1439-0523.2003.00856.x. DOI
Moreno-Sevilla B, Baenziger PS, Peterson CJ, Graybosch RA, McVey DV. The 1BL/1RS translocation: agronomic performance of F3-derived lines from a winter wheat cross. Crop Sci. 1995;35:1051–1055. doi: 10.2135/cropsci1995.0011183X003500040022x. DOI
Mujeeb-Kazi A, Hettel GP (1995) Utilizing wild grass biodiversity in wheat improvement: 15 years of wide cross research at CIMMYT Report No: 2.p. 1–140
Mujeeb-Kazi A, Kazi AG, Dundas I, Rasheed A, Ogbonnaya F, Kishii M, Bonnett D, Wang RR-C, Xu S, Chen P, Mahmood T, Bux H, Farrakh S (2013) Genetic diversity for wheat improvement as a conduit to food security. Elsevier, pp 179–257. 10.1016/B978-0-12-417187-9.00004-8
Nagaki K, Tsujimoto H, Isono K, Sasakuma T. Molecular characterization of a tandem repeat, Afa family, and its distribution among Triticeae. Genome. 1995;38:479–486. doi: 10.1139/g95-063. PubMed DOI
Oliver RE, Xu SS, Stack RW, Friesen TL, Jin Y, Cai X. Molecular cytogenetic characterization of four partial wheat-Thinopyrum ponticum amphiploids and their reactions to Fusarium head blight, tan spot, and Stagonospora nodorum blotch. Theor Appl Genet. 2006;112:1473–1479. doi: 10.1007/s00122-006-0250-1. PubMed DOI
Payne PI, Holt LM, Jackson EA, Law CN. Wheat storage proteins: their genetics and their potential for manipulation by plant breeding. Phil Trans R Soc Lond B. 1984;304:359–371. doi: 10.1098/rstb.1984.0031. DOI
Payne PI, Nightingale MA, Krattiger AF, Holt LM. The relationship between HMW glutenin subunit composition and the bread-making quality of British-grown wheat varieties. J Sci Food Agric. 1987;1987(40):51–65. doi: 10.1002/jsfa.2740400108. DOI
Pedersen C, Langridge P. Identification of the entire chromosome complement of bread wheat by two-colour FISH. Genome. 1997;40:589–593. doi: 10.1139/g97-077. PubMed DOI
Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivar of Triticum aestivum L. Euphytica. 1998;100:323–340. doi: 10.1023/A:1018361819215. DOI
Ren T, Hu Y, Tang Y, Li C, Yan B, Ren Z, Tan F, Tang Z, Fu S, Li Z. Utilization of a Wheat 55K SNP Array for mapping of major QTL for temporal expression of the tiller number. Front Plant Sci. 2018;9:333. doi: 10.3389/fpls.2018.00333. PubMed DOI PMC
Reynolds M, Bonnett D, Chapman SC, Furbank RT, Manès Y, Mather DE, Parry MAJ. Raising yield potential of wheat. I. Overview of a consortium approach and breeding strategies. J Exp Bot. 2011;62:439–452. doi: 10.1093/jxb/erq311. PubMed DOI
Said M, Cápal P, Farkas A, Gaál E, Ivanizs L, Friebe B, Doležel J, Molnár I. Flow karyotyping of wheat-Aegilops additions facilitate dissecting the genomes of Ae. biuncialis and Ae. geniculata into individual chromosomes. Front Plant Sci. 2022;13:1017958. doi: 10.3389/fpls.2022.1017958. PubMed DOI PMC
Said M, Kubaláková M, Karafiátová M, Molnár I, Doležel J, Vrána J (2019) Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome 12:0. 10.3835/plantgenome2018.12.0096 PubMed
Sánchez-Martín J, Steuernagel B, Ghosh S, Herren G, Hurni S, Adamski N, Vrána J, Kubaláková M, Krattinger SG, Wicker T, Doležel J, Keller B, Wulff BB. Rapid gene isolation in barley and wheat by mutant chromosome sequencing. Genome Biol. 2016;17:1–7. doi: 10.1186/s13059-016-1082-1. PubMed DOI PMC
Sears ER. Transfer of alien genetic material to wheat. In: Evans LT, Peacock WJ, editors. Wheat science - today and tomorrow. New York.: Cambridge University Press; 1981. pp. 75–89.
Spielmeyer W, Richards RA. Comparative mapping of wheat chromosome 1AS which contains the tiller inhibition gene (tin) with rice chromosome 5S. Theor Appl Genet. 2004;109:1303–1310. doi: 10.1007/s00122-004-1745-2. PubMed DOI
Tang S, Li Z, Jia X, Larkin PJ. Genomic in situ hybridization (GISH) analyses of Thinopyrum intermedium, its partial amphiploid Zhong 5, and disease-resistant derivatives in wheat. Theor Appl Genet. 2000;100:344–352. doi: 10.1007/s001220050045. DOI
Tester M, Langridge P. Breeding technologies to increase crop production in a changing world. Science. 2010;327:818–822. doi: 10.1126/science.1183700. PubMed DOI
Tiwari VK, Wang S, Sehgal S, Vrána J, Friebe B, Kubaláková M, Chhuneja P, Doležel J, Akhunov E, Kalia B, Sabir J, Gill BS. SNP Discovery for mapping alien introgressions in wheat. BMC Genomics. 2014;15:273. doi: 10.1186/1471-2164-15-273. PubMed DOI PMC
Tong K, Wu X, He L, Qiu S, Liu S, Cai L, Rao S, Chen J. Genome-wide identification and expression profile of OSCA gene family members in Triticum aestivum L. Int J Mol Sci. 2021;23:469. doi: 10.3390/ijms23010469. PubMed DOI PMC
Tóth V, Láng L, Vida L, Mikó P, Rakszegi M. Characterization of the protein and carbohydrate related quality traits of a large set of spelt wheat genotypes. Foods. 2022;2022(11):2061. doi: 10.3390/foods11142061. PubMed DOI PMC
Tottman DR. The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol. 1987;110:441–454. doi: 10.1111/j.1744-7348.1987.tb03275.x. DOI
Vrána J, Cápal P, Šimková H, Karafiátová M, Čížková J, Doležel J. Flow analysis and sorting of plant chromosomes. Curr Protoc Cytom. 2016;78:5.3.1–5.3.43. doi: 10.1002/cpcy.9. PubMed DOI
Vrána J, Cápal P, Číhalíková J, Kubaláková M, Doležel J. Flow sorting plant chromosomes. Methods Mol Biol. 2016;1429:119–134. doi: 10.1007/978-1-4939-3622-9_10. PubMed DOI
Wang RR-C, Larson SR, Jensen KB. Analyses of Thinopyrum bessarabicum, T. elongatum, and T. junceum chromosomes using EST-SSR markers. Genome. 2010;53:1083–1089. doi: 10.1139/G10-088. PubMed DOI
Wang RR-C, Larson SR, Jensen KB, Bushman BS, DeHaan LR, Wang S, Yan X. Genome evolution of intermediate wheatgrass as revealed by EST-SSR markers developed from its three progenitor diploid species. Genome. 2015;58:63–70. doi: 10.1139/gen-2014-0186. PubMed DOI
Wang R, Liu Y, Isham K, Zhao W, Wheeler J, Klassen N, Hu Y, Bonman JM, Chen J. QTL identification and KASP marker development for productive tiller and fertile spikelet numbers in two high-yielding hard white spring wheat cultivars. Mol Breed. 2018;38:135. doi: 10.1007/s11032-018-0894-y. PubMed DOI PMC
Yang G, Boshoff WHP, Li H, Pretorius ZA, Luo Q, Li B, Li Z, Zheng Q. Chromosomal composition analysis and molecular marker development for the novel Ug99-resistant wheat-Thinopyrum ponticum translocation line WTT34. Theor Appl Genet. 2021;134:1587–1599. doi: 10.1007/s00122-021-03796-0. PubMed DOI
Yu G, Matny O, Champouret N, et al. Aegilops sharonensis genome-assisted identification of stem rust resistance gene Sr62. Nat Commun. 2022;13:1607. doi: 10.1038/s41467-022-29132-8. PubMed DOI PMC
Zeller FJ (1973) lB/lR wheat-rye chromosome substitutions and translocations. Proc. 4th Intern. Wheat Genet. Symp. 1973, Columbia, Missouri, 209—221
Zhang J, Wu M, Yu JW, Li XL, Pei WF. Breeding potential of introgression lines developed from interspecific crossing between Upland cotton (Gossypium hirsutum) and Gossypium barbadense: heterosis, combining ability and genetic effects. PLoS ONE. 2016;11:e0143646. doi: 10.1371/journal.pone.0143646. PubMed DOI PMC
Gametocidal genes: from a discovery to the application in wheat breeding