An autoactive NB-LRR gene causes Rht13 dwarfism in wheat
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
BB/P016855/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
36417432
PubMed Central
PMC9860330
DOI
10.1073/pnas.2209875119
Knihovny.cz E-zdroje
- Klíčová slova
- Triticum aestivum L. (wheat), autoactive NB-LRR, reduced-height (Rht) gene, semidwarfing gene,
- MeSH
- nanismus * MeSH
- nukleotidy metabolismus MeSH
- pšenice * genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- šlechtění rostlin MeSH
- vazebná místa MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- nukleotidy MeSH
- rostlinné proteiny MeSH
Semidwarfing genes have greatly increased wheat yields globally, yet the widely used gibberellin (GA)-insensitive genes Rht-B1b and Rht-D1b have disadvantages for seedling emergence. Use of the GA-sensitive semidwarfing gene Rht13 avoids this pleiotropic effect. Here, we show that Rht13 encodes a nucleotide-binding site/leucine-rich repeat (NB-LRR) gene. A point mutation in the semidwarf Rht-B13b allele autoactivates the NB-LRR gene and causes a height reduction comparable with Rht-B1b and Rht-D1b in diverse genetic backgrounds. The autoactive Rht-B13b allele leads to transcriptional up-regulation of pathogenesis-related genes including class III peroxidases associated with cell wall remodeling. Rht13 represents a new class of reduced height (Rht) gene, unlike other Rht genes, which encode components of the GA signaling or metabolic pathways. This discovery opens avenues to use autoactive NB-LRR genes as semidwarfing genes in a range of crop species, and to apply Rht13 in wheat breeding programs using a perfect genetic marker.
Grain Research Laboratory Canadian Grain Commission Winnipeg MB R3C 3G8 Canada
Grains Research and Development Corporation Canberra ACT 2600 Australia
John Innes Centre Norwich Research Park Norwich NR4 7UH UK
Norwegian University of Life Sciences Ås 1432 Norway
Research School of Biology The Australian National University Canberra ACT 2601 Australia
Zobrazit více v PubMed
Hedden P., The genes of the Green Revolution. Trends Genet. 19, 5–9 (2003). PubMed
Peng J., et al. , ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400, 256–261 (1999). PubMed
Thomas S. G., Novel Rht-1 dwarfing genes: Tools for wheat breeding and dissecting the function of DELLA proteins. J. Exp. Bot. 68, 354–358 (2017). PubMed PMC
Allan R. E., Influence of semidwarfism and genetic background on stand establishment of wheat. Crop Sci. 20, 634–638 (1980).
Srinivasachary, et al. , Semi-dwarfing Rht-B1 and Rht-D1 loci of wheat differ significantly in their influence on resistance to Fusarium head blight. Theor. Appl. Genet. 118, 695–702 (2009). PubMed
Richards R. A., et al. , Breeding for improved water productivity in temperate cereals: Phenotyping, quantitative trait loci, markers and the selection environment. Funct. Plant Biol. 37, 85–97 (2010).
McIntosh R. A., Dubcovsky J., Rogers W. J., Xia X. C., Raupp W. J., Catalogue of Gene Symbols for Wheat. https://wheat.pw.usda.gov/GG3/WGC (2020). Accessed 10 January 2022.
Ford B. A., et al. , Rht18 semidwarfism in wheat is due to increased GA 2-oxidaseA9 expression and reduced GA content. Plant Physiol. 177, 168–180 (2018). PubMed PMC
Haque M., Martinek P., Watanabe N., Kuboyama T., Genetic mapping of gibberellic acid-sensitive genes for semi-dwarfism in durum wheat. Cereal Res. Commun. 39, 171–178 (2011).
Tang T., Physiological and Genetic Studies of an Alternative Semi-Dwarfing Gene Rht18 in Wheat (University of Tasmania, 2016).
Buss W., et al. , Overgrowth mutants determine the causal role of gibberellin GA2oxidaseA13 in Rht12 dwarfism of wheat. J. Exp. Bot. 71, 7171–7178 (2020). PubMed
Sun L., et al. , A wheat dominant dwarfing line with Rht12, which reduces stem cell length and affects gibberellic acid synthesis, is a 5AL terminal deletion line. Plant J. 97, 887–900 (2019). PubMed
Tian X., et al. , Rht24b, an ancient variation of TaGA2ox-A9, reduces plant height without yield penalty in wheat. New Phytol. 233, 738–750 (2022). PubMed
Pearce S., et al. , Heterologous expression and transcript analysis of gibberellin biosynthetic genes of grasses reveals novel functionality in the GA3ox family. BMC Plant Biol. 15, 130 (2015). PubMed PMC
Ellis M. H., et al. , The effect of different height reducing genes on the early growth of wheat. Funct. Plant Biol. 31, 583–589 (2004). PubMed
Rebetzke G. J., et al. , The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res. 124, 323–331 (2011).
Rebetzke G. J., et al. , Height reduction and agronomic performance for selected gibberellin-responsive dwarfing genes in bread wheat (Triticum aestivum L.). Field Crops Res. 126, 87–96 (2012).
Wang Y., et al. , Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res. 162, 39–47 (2014).
Wang Y., et al. , Comparing the effects of GA-responsive dwarfing genes Rht13 and Rht8 on plant height and some agronomic traits in common wheat. Field Crops Res. 179, 35–43 (2015).
Divashuk M. G., et al. , Effect of gibberellin responsive reduced height allele Rht13 on agronomic traits in spring bread wheat in field experiment in non-black soil zone. Agronomy 10, 927 (2020).
Ellis M. H., Rebetzke G. J., Azanza F., Richards R. A., Spielmeyer W., Molecular mapping of gibberellin-responsive dwarfing genes in bread wheat. Theor. Appl. Genet. 111, 423–430 (2005). PubMed
Konzak C., “Evaluation and genetic analysis of semi-dwarf mutants of wheat” in Semi-Dwarf Cereal Mutants and Their Use in Cross-Breeding: Research Coordination Meeting 1981 (International Atomic Energy Agency, Vienna, Austria, 1982), pp. 25–37.
Cavanagh C. R., et al. , Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc. Natl. Acad. Sci. U.S.A. 110, 8057–8062 (2013). PubMed PMC
Wang S., et al. , Characterization of polyploid wheat genomic diversity using a high-density 90 000 single nucleotide polymorphism array. Plant Biotechnol. J. 12, 787–796 (2014). PubMed PMC
IWGSC, et al., Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science 361, eaar7191, (2018). PubMed
Walkowiak S., et al. , Multiple wheat genomes reveal global variation in modern breeding. Nature 588, 277–283 (2020). PubMed PMC
Meyers B. C., Kozik A., Griego A., Kuang H., Michelmore R. W., Genome-wide analysis of NBS-LRR–encoding genes in Arabidopsis. Plant Cell 15, 809–834 (2003). PubMed PMC
Krasileva K. V., et al. , Uncovering hidden variation in polyploid wheat. Proc. Natl. Acad. Sci. U.S.A. 114, E913–E921 (2017). PubMed PMC
Brinton J., et al. , A haplotype-led approach to increase the precision of wheat breeding. Commun. Biol. 3, 712 (2020). PubMed PMC
Sato K., et al. , Chromosome-scale genome assembly of the transformation-amenable common wheat cultivar ‘Fielder’. DNA Res. 28, dsab008 (2021). PubMed PMC
Tameling W. I. L., et al. , Mutations in the NB-ARC domain of I-2 that impair ATP hydrolysis cause autoactivation. Plant Physiol. 140, 1233–1245 (2006). PubMed PMC
Schopfer P., Hydrogen peroxide-mediated cell-wall stiffening in vitro in maize coleoptiles. Planta 199, 43–49 (1996).
Schmidt R., Kunkowska A. B., Schippers J. H. M., Role of reactive oxygen species during cell expansion in leaves. Plant Physiol. 172, 2098–2106 (2016). PubMed PMC
Smirnoff N., Arnaud D., Hydrogen peroxide metabolism and functions in plants. New Phytol. 221, 1197–1214 (2019). PubMed
Chintamanani S., Hulbert S. H., Johal G. S., Balint-Kurti P. J., Identification of a maize locus that modulates the hypersensitive defense response, using mutant-assisted gene identification and characterization. Genetics 184, 813–825 (2010). PubMed PMC
Yang S., Hua J., A haplotype-specific Resistance gene regulated by BONZAI1 mediates temperature-dependent growth control in Arabidopsis. Plant Cell 16, 1060–1071 (2004). PubMed PMC
Roberts M., Tang S., Stallmann A., Dangl J. L., Bonardi V., Genetic requirements for signaling from an autoactive plant NB-LRR intracellular Innate ommune receptor. PLOS Genet. 9, e1003465. (2013). PubMed PMC
Howles P., et al. , Autoactive alleles of the flax L6 rust resistance gene induce non-race-specific rust resistance associated with the hypersensitive response. Mol. Plant Microbe Interact. 18, 570–582 (2005). PubMed
Hurni S., et al. , The powdery mildew resistance gene Pm8 derived from rye is suppressed by its wheat ortholog Pm3. Plant J. 79, 904–913 (2014). PubMed
Farnham G., Baulcombe D. C., Artificial evolution extends the spectrum of viruses that are targeted by a disease-resistance gene from potato. Proc. Natl. Acad. Sci. U.S.A. 103, 18828–18833 (2006). PubMed PMC
Giannakopoulou A., et al. , Tomato I2 immune receptor can be engineered to confer partial resistance to the oomycete Phytophthora infestans in addition to the fungus Fusarium oxysporum. Mol. Plant-Microbe Interact. 28, 1316–1329 (2015). PubMed
Sannemann W., et al. , Adaptive selection of founder segments and epistatic control of plant height in the MAGIC winter wheat population WM-800. BMC Genomics 19, 559 (2018). PubMed PMC
Scott M. F., et al. , Limited haplotype diversity underlies polygenic trait architecture across 70 years of wheat breeding. Genome Biol. 22, 1–30 (2021). PubMed PMC
Huang B. E., et al. , A multiparent advanced generation inter-cross population for genetic analysis in wheat. Plant Biotechnol. J. 10, 826–839 (2012). PubMed
Borrill P., et al. , Spielmeyer, Mapping of Rht13 in hexaploid wheat. European Nucleotide Archive. https://www.ebi.ac.uk/ena/browser/view/PRJEB51492. Deposited 9 March 2022.
Borrill P., et al. , Spielmeyer, Triticum aestivum clone BAC 7J15.144I10_2_2 sequence. National Centre for Biotechnology Information. https://www.ncbi.nlm.nih.gov/nuccore/OP095266.1. Deposited 27 July 2022.
Borrill P., et al. , Spielmeyer, Triticum aestivum clone BAC 127M17.134P08_3 sequence. National Centre for Biotechnology Information. https://www.ncbi.nlm.nih.gov/nuccore/op095267. Deposited 27 July 2022.