Replacement of chromosome 3D with Thinopyrum chromosome 3St led to increased drought tolerance during the flowering stage in wheat
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
FK145848
National Research, Development and Innovation Office
TKP2021-NKTA-06
National Research, Development and Innovation Office
101135314
HORIZON EUROPE Framework Programme
BO/00384/23/4
Magyar Tudományos Akadémia
BO/00206/24/4
Magyar Tudományos Akadémia
BO/00416/23
Magyar Tudományos Akadémia
BO/00013/25/4
Magyar Tudományos Akadémia
CZ.02.01.01/00/22_008/0004581
ERDF Programme Johannes Amos Comenius
PubMed
41108441
PubMed Central
PMC12535497
DOI
10.1007/s00299-025-03632-5
PII: 10.1007/s00299-025-03632-5
Knihovny.cz E-zdroje
- Klíčová slova
- In situ hybridization, Agropyron glael, Drought tolerance, Genotyping-by-sequencing coverage analysis,
- MeSH
- chromozomy rostlin * genetika MeSH
- fenotyp MeSH
- květy * genetika fyziologie MeSH
- lipnicovité * genetika fyziologie MeSH
- období sucha MeSH
- odolnost proti suchu MeSH
- pšenice * genetika fyziologie MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
The stable 3St(3D) substitution line offers promising genetic potential for improving drought tolerance in wheat during critical reproductive stages. The flowering stage is highly susceptible to drought, which significantly reduces wheat grain yield globally. Low genetic diversity in wheat further limits the discovery of optimal gene variants for breeding climate-resilient varieties. The substitution of chromosome 3D by a group 3 chromosome pair from Thinopyrum intermedium × Th. ponticum artificial hybrid was identified using in situ hybridization and genotyping-by-sequencing. This homoeologous substitution showed good functional compensation for grain yield and fertility, similar to the wheat parents ('Mv9kr1' and 'Mv Karizma') in field and greenhouse trials. The substitution line exhibits a semidwarf phenotype due to the Rht8 and Rht2 dwarfing alleles. Automated shoot phenotyping after a 10-day water withdrawal at flowering revealed efficient water preservation allowing to maintain photosynthetic functions, sustained photosynthetic activity, and less chlorophyll degradation, indicated by Normalized Difference Vegetation Index (NDVI) and modified Normalized Difference Index (mND705) values and moderate level of protective functions shown by the expression of stress-related genes. Compared to the wheat parents, the substitution line developed thicker roots with increased volume under drought, resulting in a lower surface-to-volume ratio. This may enhance water storage efficiency and help reduce yield loss under drought conditions.
Zobrazit více v PubMed
Abrouk M, Wang Y, Cavalet-Giorsa E et al (2023) Chromosome-scale assembly of the wild wheat relative PubMed PMC
Adhikari L, Shrestha S, Wu S et al (2022) A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 12:17583. 10.1038/s41598-022-19858-2 PubMed PMC
Afzal F, Chaudhari SK, Gul A, et al (2015) Bread wheat (
Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91. 10.1023/a:1013827600528
Alam M, Baenziger PS, Frels K (2024) Emerging trends in wheat ( PubMed
Ali N, Mujeeb-Kazi A (2020) Food production: global challenges to mitigate climate change. In: Wani SH, Mohan A, Singh GP (eds) Physiological, molecular, and genetic perspectives of wheat improvement. Springer, Berlin, pp 1–13. 10.1007/978-3-030-59577-7_1
Arve L, Torre S, Olsen J, Tanino K (2011) Stomatal responses to drought stress and air humidity. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. Intech Open. 10.5772/24661
Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed PMC
Ayala-Navarrete L, Thompson N, Ohm H, Anderson J (2010) Molecular markers show a complex mosaic pattern of wheat- PubMed
Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. 10.1371/journal.pone.0003376 PubMed PMC
Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38. 10.1111/j.1365-3040.2007.01727.x PubMed
Boehm J, Cai X (2024) Enrichment and diversification of the wheat genome via alien introgression. Plants 13:339. 10.3390/plants13030339 PubMed PMC
Ceoloni C, Kuzmanović L, Ruggeri R et al (2017) Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: challenges and opportunities. Diversity 9:55. 10.3390/d9040055
Ceoloni C, Kuzmanović L, Gennaro A, et al (2013) Genomes, chromosomes and genes of the wheatgrass genus
Cheng L, Wang Y, He Q et al (2016) Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat ( PubMed PMC
Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300. 10.1016/j.pbi.2013.02.011 PubMed
Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165. 10.4161/psb.3.3.5536 PubMed PMC
Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of PubMed PMC
Darko E, Khalil R, Dobi Z et al (2020) Addition of PubMed PMC
Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145. 10.1104/pp.111.1.137 PubMed PMC
Ellis MH, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol 31(6):583–589. 10.1071/FP03207 PubMed
Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. 10.1371/journal.pone.0019379 PubMed PMC
Erenstein O, Jaleta M, Sonder K et al (2022) Global maize production, consumption and trade: trends and R&d implications. Food Secur 14:1295–1319. 10.1007/s12571-022-01288-7
FAOSTAT https://www.fao.org/faostat/en/#data/QCL. Accessed 24 Oct 2024
Farooq M, Wahid A, Kobayashi N, et al (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds). Sustain agric. Springer, Dordrecht, pp 153–188. 10.1007/978-90-481-2666-8_12
Friebe B, Zeller FJ, Mukai Y et al (1992) Characterization of rust-resistant wheat- PubMed
Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat- PubMed
Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. 10.1007/bf00035277
Fu S, Lv Z, Qi B et al (2012) Molecular cytogenetic characterization of wheat- PubMed
Galla SJ, Forsdick NJ, Brown L et al (2018) Reference genomes from distantly related species can be used for discovery of single nucleotide polymorphisms to inform conservation management. Genes 10:9. 10.3390/genes10010009 PubMed PMC
Giovenali G, Kuzmanović L, Capoccioni A, Ceoloni C (2023) The response of chromosomally engineered Durum wheat- PubMed PMC
Gruner P, Miedaner T (2021) Perennial rye: genetics of perenniality and limited fertility. Plants 10:1210. 10.3390/plants10061210 PubMed PMC
Guo X, Huang Y, Wang J et al (2023) Development and cytological characterization of wheat– PubMed PMC
Hou L, Jia J, Zhang X et al (2016) Molecular mapping of the stripe rust resistance gene PubMed
Hu L, Li G, Zhan H et al (2014) New st-chromosome-specific molecular markers for identifying wheat– PubMed
Huang Q, Li X, Chen WQ et al (2014) Genetic mapping of a putative PubMed
Jangra S, Chaudhary V, Yadav RC, Yadav NR (2021) High-throughput phenotyping: a platform to accelerate crop improvement. Phenomics 1:31–53. 10.1007/s43657-020-00007-6 PubMed PMC
Jiang C, Luo Y, Qi Y et al (2024) Characterization of novel wheat-
Kamal NM, Gorafi YSA, Abdelrahman M et al (2019) Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci 20:5837. 10.3390/ijms20235837 PubMed PMC
Kapazoglou A, Gerakari M, Lazaridi E et al (2023) Crop wild relatives: a valuable source of tolerance to various abiotic stresses. Plants 12:328. 10.3390/plants12020328 PubMed PMC
Keilwagen J, Lehnert H, Berner T et al (2019) Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front Plant Sci 10:1133. 10.3389/fpls.2019.01133 PubMed PMC
Kim N-S, Armstrong K, Knott DR (1993) Molecular detection of PubMed
King IP, Foster BP, Law CC et al (1997) Introgression of salt-tolerance genes from
King J, Grewal S, Yang C et al (2018) Introgression of PubMed PMC
Kong X, Li L, Peng P et al (2023) Wheat cultivar mixtures increase grain yield under varied climate conditions. Basic Appl Ecol 69:13–25. 10.1016/j.baae.2023.03.007
Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, J PubMed PMC
Kruppa K, Türkösi E, Mayer M et al (2016) Mcgish identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × PubMed PMC
Kruppa K, Türkösi E, Holušová K et al (2025) Genotyping-by-sequencing uncovers a PubMed PMC
Lang T, La S, Li B et al (2018) Precise identification of wheat— PubMed
Laugerotte J, Baumann U, Sourdille P (2022) Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol J 20:812–832. 10.1111/pbi.13784 PubMed PMC
Li H, Wang X (2009) PubMed
Li G, Wang H, Lang T et al (2016) New molecular markers and cytogenetic probes enable chromosome identification of wheat- PubMed
Li M, Wang Y, Liu X et al (2021) Molecular cytogenetic identification of a novel wheat- PubMed PMC
Li H, Rehman SU, Song R et al (2024) Chromosome-scale assembly and annotation of the wild wheat relative PubMed PMC
Liang J, Zhang J, Cao X (2001) Grain sink strength may be related to the poor grain filling of PubMed
Liu J, Chang Z, Zhang X et al (2013) Putative PubMed
Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798. 10.1093/jxb/ers071 PubMed PMC
Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582. 10.2135/cropsci2003.5770
Lu F, Duan W, Cui Y et al (2022) 2D-DIGE based proteome analysis of wheat- PubMed PMC
Lukaszewski AJ, Rybka K, Korzun V et al (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45. 10.1139/g03-089 PubMed
Madrid-Espinoza J, Brunel-Saldias N, Guerra FP et al (2018) Genome-wide identification and transcriptional regulation of aquaporin genes in bread wheat ( PubMed PMC
McIntosh R, Dyck P, Green G (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Crop Pasture Sci 28:37–45. 10.1071/ar9770037
Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele
Molnár-Láng M, Linc G, Szakács É, et al (2012) Wheat-alien introgression programme in Martonvásár. In: NI Vavilov’s ideas in the modern world. III Vavilov International Conference, St. Petersburg, pp 239–240
Nawaz ANA, Farooq MFM, Cheema SA et al (2013) Stay green character at grain filling ensures resistance against terminal drought in wheat. Int J Agric Biol 15:1272–1276. 10.1139/g03-089
Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685. 10.1111/j.1365-3040.2009.02107.x PubMed
Onyemaobi I, Liu H, Siddique KHM, Yan G (2017) Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Front Plant Sci 7:2071. 10.3389/fpls.2016.02071 PubMed PMC
Pantha S, Kilian B, Özkan H et al (2024) Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the
Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45. 10.1093/nar/29.9.e45 PubMed PMC
Poland J, Endelman J, Dawson J et al (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 10.3835/plantgenome2012.06.0006
Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed PMC
Pototskaya I, Shamanin V, Aydarov A, Morgounov A (2022) The use of wheatgrass ( PubMed PMC
Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H (2021) Potential of wild relatives of wheat: ideal genetic resources for future breeding programs. Agronomy 11:1656. 10.3390/agronomy11081656
Qi XL, Li XF, He F et al (2015) Cytogenetic and molecular identification of a new wheat-
Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. 10.1016/s0304-3940(02)01423-4 PubMed
Rasheed A, Wen W, Gao F et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860. 10.1007/s00122-016-2743-x PubMed
Rebetzke GJ, Bonnett DG, Ellis MH (2012) Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crop Res 127:17–25. 10.1016/j.fcr.2011.11.003
Rey E, Abrouk M, Keeble-Gagnère G et al (2018) Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. Plant Biotechnol J 16:1767–1777. 10.1111/pbi.12913 PubMed PMC
Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259. 10.1111/j.1744-7348.2005.040058.x
Rubo S, Zinkernagel J (2022) Exploring hyperspectral reflectance indices for the estimation of water and nitrogen status of spinach. Biosyst Eng 214:58–71. 10.1016/j.biosystemseng.2021.12.008
Sears ER (1973)
Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from
Sharma A, Shahzad B, Rehman A et al (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. 10.3390/molecules24132452 PubMed PMC
Sheteiwy MS, Shao H, Qi W et al (2019) GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20:5709. 10.3390/ijms20225709 PubMed PMC
Siddique M, Hamid A, Islam M (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39
Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. 10.1016/s0034-4257(02)00010-x
Song P, Wang J, Guo X et al (2021) High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J 9:633–645. 10.1016/j.cj.2021.03.015
Tang N, Jiang Y, He B, Hu Y (2009) The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China 8(9):1028–1038. 10.1016/S1671-2927(08)60310-7
Tao H, Xu S, Tian Y et al (2022) Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun 3:100344. 10.1016/j.xplc.2022.100344 PubMed PMC
Tikhenko N, Haupt M, Fuchs J et al (2024) Major chromosome rearrangements in intergeneric wheat × rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis. Sci Rep 14:11010. 10.1038/s41598-024-61622-1 PubMed PMC
Tischner T, Koszegi B, Veisz O (1997) Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agron Hung 45:85–104
Tiwari VK, Wang S, Danilova T et al (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of PubMed
Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454. 10.1111/j.1744-7348.1987.tb03275.x
Tounsi S, Giorgi D, Kuzmanović L et al (2024) Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic PubMed PMC
Tsitsin N (1979) Cytogenetic studies of wheatgrasses and wheat-wheatgrass hybrids. Problems of distant hybridization. Nauka Press, Moscow, pp 48–53
Türkösi E, Szakács É, Ivanizs L et al (2024) A chromosome arm from PubMed PMC
Wahab A, Abdi G, Saleem MH et al (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11:1620. 10.3390/plants11131620 PubMed PMC
Wang MJ, Zhang Y, Lin ZS et al (2010) Development of EST-PCR markers for PubMed
Wang C, Hu H, Qin X et al (2016) Reconstitution of CO PubMed PMC
Wang RR-C (2011) Agropyron and psathyrostachys. In: Kole C (eds) Wild crop relatives: genomic Breed Resour. Springer, Berlin, pp 77–108. 10.1007/978-3-642-14228-4_2
Wickland DP, Battu G, Hudson KA et al (2017) A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new workflow, GB-eaSy. BMC Bioinformatics 18:586. 10.1186/s12859-017-2000-6 PubMed PMC
Xi W, Tang Z, Tang S et al (2019) New ND-FISH-Positive Oligo Probes for Identifying PubMed PMC
Xu Y, Amand PSt, Chai L et al (2024) Development and validation of diagnostic markers for the reduced height gene
Xue G-P, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from PubMed PMC
Yang JC, Zhang JH, Wang ZQ et al (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631. 10.1046/j.1365-3040.2003.01081.x
Yang G-Q, Chen Y-M, Wang J-P et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:39. 10.1186/s13007-016-0139-1 PubMed PMC
Yu Z, Wang H, Yang E et al (2022) Precise identification of chromosome constitution and rearrangements in wheat- PubMed PMC
Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. 10.1111/j.1365-3180.1974.tb01084.x
Zhan H, Zhang X, Li G et al (2015) Molecular characterization of a new wheat- PubMed PMC
Zhang K, Ge X, Shen P et al (2019) Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens 11:387. 10.3390/rs11040387
Zhang Y, Wu X, Wang X et al (2025) Crop root system architecture in drought response. J Genet Genom 52:4–13. 10.1016/j.jgg.2024.05.001 PubMed
Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat PubMed PMC
Zwyrtková J, Blavet N, Doležalová A et al (2022) Draft sequencing crested wheatgrass chromosomes identified evolutionary structural changes and genes and facilitated the development of SSR markers. Int J Mol Sci 23:3191. 10.3390/ijms23063191 PubMed PMC