Replacement of chromosome 3D with Thinopyrum chromosome 3St led to increased drought tolerance during the flowering stage in wheat

. 2025 Oct 18 ; 44 (11) : 242. [epub] 20251018

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41108441

Grantová podpora
FK145848 National Research, Development and Innovation Office
TKP2021-NKTA-06 National Research, Development and Innovation Office
101135314 HORIZON EUROPE Framework Programme
BO/00384/23/4 Magyar Tudományos Akadémia
BO/00206/24/4 Magyar Tudományos Akadémia
BO/00416/23 Magyar Tudományos Akadémia
BO/00013/25/4 Magyar Tudományos Akadémia
CZ.02.01.01/00/22_008/0004581 ERDF Programme Johannes Amos Comenius

Odkazy

PubMed 41108441
PubMed Central PMC12535497
DOI 10.1007/s00299-025-03632-5
PII: 10.1007/s00299-025-03632-5
Knihovny.cz E-zdroje

The stable 3St(3D) substitution line offers promising genetic potential for improving drought tolerance in wheat during critical reproductive stages. The flowering stage is highly susceptible to drought, which significantly reduces wheat grain yield globally. Low genetic diversity in wheat further limits the discovery of optimal gene variants for breeding climate-resilient varieties. The substitution of chromosome 3D by a group 3 chromosome pair from Thinopyrum intermedium × Th. ponticum artificial hybrid was identified using in situ hybridization and genotyping-by-sequencing. This homoeologous substitution showed good functional compensation for grain yield and fertility, similar to the wheat parents ('Mv9kr1' and 'Mv Karizma') in field and greenhouse trials. The substitution line exhibits a semidwarf phenotype due to the Rht8 and Rht2 dwarfing alleles. Automated shoot phenotyping after a 10-day water withdrawal at flowering revealed efficient water preservation allowing to maintain photosynthetic functions, sustained photosynthetic activity, and less chlorophyll degradation, indicated by Normalized Difference Vegetation Index (NDVI) and modified Normalized Difference Index (mND705) values and moderate level of protective functions shown by the expression of stress-related genes. Compared to the wheat parents, the substitution line developed thicker roots with increased volume under drought, resulting in a lower surface-to-volume ratio. This may enhance water storage efficiency and help reduce yield loss under drought conditions.

Zobrazit více v PubMed

Abrouk M, Wang Y, Cavalet-Giorsa E et al (2023) Chromosome-scale assembly of the wild wheat relative PubMed PMC

Adhikari L, Shrestha S, Wu S et al (2022) A high-throughput skim-sequencing approach for genotyping, dosage estimation and identifying translocations. Sci Rep 12:17583. 10.1038/s41598-022-19858-2 PubMed PMC

Afzal F, Chaudhari SK, Gul A, et al (2015) Bread wheat (

Ahmadi A, Baker DA (2001) The effect of water stress on the activities of key regulatory enzymes of the sucrose to starch pathway in wheat. Plant Growth Regul 35:81–91. 10.1023/a:1013827600528

Alam M, Baenziger PS, Frels K (2024) Emerging trends in wheat ( PubMed

Ali N, Mujeeb-Kazi A (2020) Food production: global challenges to mitigate climate change. In: Wani SH, Mohan A, Singh GP (eds) Physiological, molecular, and genetic perspectives of wheat improvement. Springer, Berlin, pp 1–13. 10.1007/978-3-030-59577-7_1

Arve L, Torre S, Olsen J, Tanino K (2011) Stomatal responses to drought stress and air humidity. In: Shanker A, Venkateswarlu B (eds) Abiotic stress in plants—mechanisms and adaptations. Intech Open. 10.5772/24661

Awlia M, Nigro A, Fajkus J et al (2016) High-throughput non-destructive phenotyping of traits that contribute to salinity tolerance in PubMed PMC

Ayala-Navarrete L, Thompson N, Ohm H, Anderson J (2010) Molecular markers show a complex mosaic pattern of wheat- PubMed

Baird NA, Etter PD, Atwood TS et al (2008) Rapid SNP discovery and genetic mapping using sequenced RAD markers. PLoS ONE 3:e3376. 10.1371/journal.pone.0003376 PubMed PMC

Barnabás B, Jäger K, Fehér A (2008) The effect of drought and heat stress on reproductive processes in cereals. Plant Cell Environ 31:11–38. 10.1111/j.1365-3040.2007.01727.x PubMed

Boehm J, Cai X (2024) Enrichment and diversification of the wheat genome via alien introgression. Plants 13:339. 10.3390/plants13030339 PubMed PMC

Ceoloni C, Kuzmanović L, Ruggeri R et al (2017) Harnessing genetic diversity of wild gene pools to enhance wheat crop production and sustainability: challenges and opportunities. Diversity 9:55. 10.3390/d9040055

Ceoloni C, Kuzmanović L, Gennaro A, et al (2013) Genomes, chromosomes and genes of the wheatgrass genus

Cheng L, Wang Y, He Q et al (2016) Comparative proteomics illustrates the complexity of drought resistance mechanisms in two wheat ( PubMed PMC

Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300. 10.1016/j.pbi.2013.02.011 PubMed

Cruz de Carvalho MH (2008) Drought stress and reactive oxygen species: production, scavenging and signaling. Plant Signal Behav 3:156–165. 10.4161/psb.3.3.5536 PubMed PMC

Cseh A, Yang C, Hubbart-Edwards S et al (2019) Development and validation of an exome-based SNP marker set for identification of the St, Jr and Jvs genomes of PubMed PMC

Darko E, Khalil R, Dobi Z et al (2020) Addition of PubMed PMC

Dorion S, Lalonde S, Saini HS (1996) Induction of male sterility in wheat by meiotic-stage water deficit is preceded by a decline in invertase activity and changes in carbohydrate metabolism in anthers. Plant Physiol 111:137–145. 10.1104/pp.111.1.137 PubMed PMC

Ellis MH, Rebetzke GJ, Chandler P, Bonnett D, Spielmeyer W, Richards RA (2004) The effect of different height reducing genes on the early growth of wheat. Funct Plant Biol 31(6):583–589. 10.1071/FP03207 PubMed

Elshire RJ, Glaubitz JC, Sun Q et al (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379. 10.1371/journal.pone.0019379 PubMed PMC

Erenstein O, Jaleta M, Sonder K et al (2022) Global maize production, consumption and trade: trends and R&d implications. Food Secur 14:1295–1319. 10.1007/s12571-022-01288-7

FAOSTAT https://www.fao.org/faostat/en/#data/QCL. Accessed 24 Oct 2024

Farooq M, Wahid A, Kobayashi N, et al (2009) Plant Drought Stress: Effects, Mechanisms and Management. In: Lichtfouse E, Navarrete M, Debaeke P, Véronique S, Alberola C (eds). Sustain agric. Springer, Dordrecht, pp 153–188. 10.1007/978-90-481-2666-8_12

Friebe B, Zeller FJ, Mukai Y et al (1992) Characterization of rust-resistant wheat- PubMed

Friebe B, Jiang J, Gill BS, Dyck PL (1993) Radiation-induced nonhomoeologous wheat- PubMed

Friebe B, Jiang J, Raupp WJ et al (1996) Characterization of wheat-alien translocations conferring resistance to diseases and pests: current status. Euphytica 91:59–87. 10.1007/bf00035277

Fu S, Lv Z, Qi B et al (2012) Molecular cytogenetic characterization of wheat- PubMed

Galla SJ, Forsdick NJ, Brown L et al (2018) Reference genomes from distantly related species can be used for discovery of single nucleotide polymorphisms to inform conservation management. Genes 10:9. 10.3390/genes10010009 PubMed PMC

Giovenali G, Kuzmanović L, Capoccioni A, Ceoloni C (2023) The response of chromosomally engineered Durum wheat- PubMed PMC

Gruner P, Miedaner T (2021) Perennial rye: genetics of perenniality and limited fertility. Plants 10:1210. 10.3390/plants10061210 PubMed PMC

Guo X, Huang Y, Wang J et al (2023) Development and cytological characterization of wheat– PubMed PMC

Hou L, Jia J, Zhang X et al (2016) Molecular mapping of the stripe rust resistance gene PubMed

Hu L, Li G, Zhan H et al (2014) New st-chromosome-specific molecular markers for identifying wheat– PubMed

Huang Q, Li X, Chen WQ et al (2014) Genetic mapping of a putative PubMed

Jangra S, Chaudhary V, Yadav RC, Yadav NR (2021) High-throughput phenotyping: a platform to accelerate crop improvement. Phenomics 1:31–53. 10.1007/s43657-020-00007-6 PubMed PMC

Jiang C, Luo Y, Qi Y et al (2024) Characterization of novel wheat-

Kamal NM, Gorafi YSA, Abdelrahman M et al (2019) Stay-green trait: a prospective approach for yield potential, and drought and heat stress adaptation in globally important cereals. Int J Mol Sci 20:5837. 10.3390/ijms20235837 PubMed PMC

Kapazoglou A, Gerakari M, Lazaridi E et al (2023) Crop wild relatives: a valuable source of tolerance to various abiotic stresses. Plants 12:328. 10.3390/plants12020328 PubMed PMC

Keilwagen J, Lehnert H, Berner T et al (2019) Detecting large chromosomal modifications using short read data from genotyping-by-sequencing. Front Plant Sci 10:1133. 10.3389/fpls.2019.01133 PubMed PMC

Kim N-S, Armstrong K, Knott DR (1993) Molecular detection of PubMed

King IP, Foster BP, Law CC et al (1997) Introgression of salt-tolerance genes from

King J, Grewal S, Yang C et al (2018) Introgression of PubMed PMC

Kong X, Li L, Peng P et al (2023) Wheat cultivar mixtures increase grain yield under varied climate conditions. Basic Appl Ecol 69:13–25. 10.1016/j.baae.2023.03.007

Kruppa K, Molnár-Láng M (2016) Simultaneous visualization of different genomes (J, J PubMed PMC

Kruppa K, Türkösi E, Mayer M et al (2016) Mcgish identification and phenotypic description of leaf rust and yellow rust resistant partial amphiploids originating from a wheat × PubMed PMC

Kruppa K, Türkösi E, Holušová K et al (2025) Genotyping-by-sequencing uncovers a PubMed PMC

Lang T, La S, Li B et al (2018) Precise identification of wheat— PubMed

Laugerotte J, Baumann U, Sourdille P (2022) Genetic control of compatibility in crosses between wheat and its wild or cultivated relatives. Plant Biotechnol J 20:812–832. 10.1111/pbi.13784 PubMed PMC

Li H, Wang X (2009) PubMed

Li G, Wang H, Lang T et al (2016) New molecular markers and cytogenetic probes enable chromosome identification of wheat- PubMed

Li M, Wang Y, Liu X et al (2021) Molecular cytogenetic identification of a novel wheat- PubMed PMC

Li H, Rehman SU, Song R et al (2024) Chromosome-scale assembly and annotation of the wild wheat relative PubMed PMC

Liang J, Zhang J, Cao X (2001) Grain sink strength may be related to the poor grain filling of PubMed

Liu J, Chang Z, Zhang X et al (2013) Putative PubMed

Lopes MS, Reynolds MP (2012) Stay-green in spring wheat can be determined by spectral reflectance measurements (normalized difference vegetation index) independently from phenology. J Exp Bot 63:3789–3798. 10.1093/jxb/ers071 PubMed PMC

Lopez CG, Banowetz GM, Peterson CJ, Kronstad WE (2003) Dehydrin expression and drought tolerance in seven wheat cultivars. Crop Sci 43:577–582. 10.2135/cropsci2003.5770

Lu F, Duan W, Cui Y et al (2022) 2D-DIGE based proteome analysis of wheat- PubMed PMC

Lukaszewski AJ, Rybka K, Korzun V et al (2004) Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome 47:36–45. 10.1139/g03-089 PubMed

Madrid-Espinoza J, Brunel-Saldias N, Guerra FP et al (2018) Genome-wide identification and transcriptional regulation of aquaporin genes in bread wheat ( PubMed PMC

McIntosh R, Dyck P, Green G (1977) Inheritance of leaf rust and stem rust resistances in wheat cultivars Agent and Agatha. Crop Pasture Sci 28:37–45. 10.1071/ar9770037

Molnár-Láng M, Linc G, Sutka J (1996) Transfer of the recessive crossability allele

Molnár-Láng M, Linc G, Szakács É, et al (2012) Wheat-alien introgression programme in Martonvásár. In: NI Vavilov’s ideas in the modern world. III Vavilov International Conference, St. Petersburg, pp 239–240

Nawaz ANA, Farooq MFM, Cheema SA et al (2013) Stay green character at grain filling ensures resistance against terminal drought in wheat. Int J Agric Biol 15:1272–1276. 10.1139/g03-089

Nevo E, Chen G (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33:670–685. 10.1111/j.1365-3040.2009.02107.x PubMed

Onyemaobi I, Liu H, Siddique KHM, Yan G (2017) Both male and female malfunction contributes to yield reduction under water stress during meiosis in bread wheat. Front Plant Sci 7:2071. 10.3389/fpls.2016.02071 PubMed PMC

Pantha S, Kilian B, Özkan H et al (2024) Physiological and biochemical changes induced by drought stress during the stem elongation and anthesis stages in the

Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res 29:e45–e45. 10.1093/nar/29.9.e45 PubMed PMC

Poland J, Endelman J, Dawson J et al (2012a) Genomic selection in wheat breeding using genotyping-by-sequencing. Plant Genome. 10.3835/plantgenome2012.06.0006

Poland JA, Brown PJ, Sorrells ME, Jannink J-L (2012b) Development of high-density genetic maps for barley and wheat using a novel two-enzyme genotyping-by-sequencing approach. PLoS ONE 7:e32253. 10.1371/journal.pone.0032253 PubMed PMC

Pototskaya I, Shamanin V, Aydarov A, Morgounov A (2022) The use of wheatgrass ( PubMed PMC

Pour-Aboughadareh A, Kianersi F, Poczai P, Moradkhani H (2021) Potential of wild relatives of wheat: ideal genetic resources for future breeding programs. Agronomy 11:1656. 10.3390/agronomy11081656

Qi XL, Li XF, He F et al (2015) Cytogenetic and molecular identification of a new wheat-

Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM (2003) Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett 339:62–66. 10.1016/s0304-3940(02)01423-4 PubMed

Rasheed A, Wen W, Gao F et al (2016) Development and validation of KASP assays for genes underpinning key economic traits in bread wheat. Theor Appl Genet 129:1843–1860. 10.1007/s00122-016-2743-x PubMed

Rebetzke GJ, Bonnett DG, Ellis MH (2012) Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crop Res 127:17–25. 10.1016/j.fcr.2011.11.003

Rey E, Abrouk M, Keeble-Gagnère G et al (2018) Transcriptome reprogramming due to the introduction of a barley telosome into bread wheat affects more barley genes than wheat. Plant Biotechnol J 16:1767–1777. 10.1111/pbi.12913 PubMed PMC

Reynolds MP, Mujeeb-Kazi A, Sawkins M (2005) Prospects for utilising plant-adaptive mechanisms to improve wheat and other crops in drought- and salinity-prone environments. Ann Appl Biol 146:239–259. 10.1111/j.1744-7348.2005.040058.x

Rubo S, Zinkernagel J (2022) Exploring hyperspectral reflectance indices for the estimation of water and nitrogen status of spinach. Biosyst Eng 214:58–71. 10.1016/j.biosystemseng.2021.12.008

Sears ER (1973)

Sharma D, Knott DR (1966) The transfer of leaf-rust resistance from

Sharma A, Shahzad B, Rehman A et al (2019) Response of phenylpropanoid pathway and the role of polyphenols in plants under abiotic stress. Molecules 24:2452. 10.3390/molecules24132452 PubMed PMC

Sheteiwy MS, Shao H, Qi W et al (2019) GABA-alleviated oxidative injury induced by salinity, osmotic stress and their combination by regulating cellular and molecular signals in rice. Int J Mol Sci 20:5709. 10.3390/ijms20225709 PubMed PMC

Siddique M, Hamid A, Islam M (2000) Drought stress effects on water relations of wheat. Bot Bull Acad Sin 41:35–39

Sims DA, Gamon JA (2002) Relationships between leaf pigment content and spectral reflectance across a wide range of species, leaf structures and developmental stages. Remote Sens Environ 81:337–354. 10.1016/s0034-4257(02)00010-x

Song P, Wang J, Guo X et al (2021) High-throughput phenotyping: breaking through the bottleneck in future crop breeding. Crop J 9:633–645. 10.1016/j.cj.2021.03.015

Tang N, Jiang Y, He B, Hu Y (2009) The effects of dwarfing genes (Rht-B1b, Rht-D1b, and Rht8) with different sensitivity to GA3 on the coleoptile length and plant height of wheat. Agric Sci China 8(9):1028–1038. 10.1016/S1671-2927(08)60310-7

Tao H, Xu S, Tian Y et al (2022) Proximal and remote sensing in plant phenomics: 20 years of progress, challenges, and perspectives. Plant Commun 3:100344. 10.1016/j.xplc.2022.100344 PubMed PMC

Tikhenko N, Haupt M, Fuchs J et al (2024) Major chromosome rearrangements in intergeneric wheat × rye hybrids in compatible and incompatible crosses detected by GBS read coverage analysis. Sci Rep 14:11010. 10.1038/s41598-024-61622-1 PubMed PMC

Tischner T, Koszegi B, Veisz O (1997) Climatic programmes used in the Martonvásár phytotron most frequently in recent years. Acta Agron Hung 45:85–104

Tiwari VK, Wang S, Danilova T et al (2015) Exploring the tertiary gene pool of bread wheat: sequence assembly and analysis of chromosome 5Mg of PubMed

Tottman DR (1987) The decimal code for the growth stages of cereals, with illustrations. Ann Appl Biol 110:441–454. 10.1111/j.1744-7348.1987.tb03275.x

Tounsi S, Giorgi D, Kuzmanović L et al (2024) Coping with salinity stress: segmental group 7 chromosome introgressions from halophytic PubMed PMC

Tsitsin N (1979) Cytogenetic studies of wheatgrasses and wheat-wheatgrass hybrids. Problems of distant hybridization. Nauka Press, Moscow, pp 48–53

Türkösi E, Szakács É, Ivanizs L et al (2024) A chromosome arm from PubMed PMC

Wahab A, Abdi G, Saleem MH et al (2022) Plants’ physio-biochemical and phyto-hormonal responses to alleviate the adverse effects of drought stress: a comprehensive review. Plants 11:1620. 10.3390/plants11131620 PubMed PMC

Wang MJ, Zhang Y, Lin ZS et al (2010) Development of EST-PCR markers for PubMed

Wang C, Hu H, Qin X et al (2016) Reconstitution of CO PubMed PMC

Wang RR-C (2011) Agropyron and psathyrostachys. In: Kole C (eds) Wild crop relatives: genomic Breed Resour. Springer, Berlin, pp 77–108. 10.1007/978-3-642-14228-4_2

Wickland DP, Battu G, Hudson KA et al (2017) A comparison of genotyping-by-sequencing analysis methods on low-coverage crop datasets shows advantages of a new workflow, GB-eaSy. BMC Bioinformatics 18:586. 10.1186/s12859-017-2000-6 PubMed PMC

Xi W, Tang Z, Tang S et al (2019) New ND-FISH-Positive Oligo Probes for Identifying PubMed PMC

Xu Y, Amand PSt, Chai L et al (2024) Development and validation of diagnostic markers for the reduced height gene

Xue G-P, Sadat S, Drenth J, McIntyre CL (2014) The heat shock factor family from PubMed PMC

Yang JC, Zhang JH, Wang ZQ et al (2003) Involvement of abscisic acid and cytokinins in the senescence and remobilization of carbon reserves in wheat subjected to water stress during grain filling. Plant Cell Environ 26:1621–1631. 10.1046/j.1365-3040.2003.01081.x

Yang G-Q, Chen Y-M, Wang J-P et al (2016) Development of a universal and simplified ddRAD library preparation approach for SNP discovery and genotyping in angiosperm plants. Plant Methods 12:39. 10.1186/s13007-016-0139-1 PubMed PMC

Yu Z, Wang H, Yang E et al (2022) Precise identification of chromosome constitution and rearrangements in wheat- PubMed PMC

Zadoks JC, Chang TT, Konzak CF (1974) A decimal code for the growth stages of cereals. Weed Res 14:415–421. 10.1111/j.1365-3180.1974.tb01084.x

Zhan H, Zhang X, Li G et al (2015) Molecular characterization of a new wheat- PubMed PMC

Zhang K, Ge X, Shen P et al (2019) Predicting rice grain yield based on dynamic changes in vegetation indexes during early to mid-growth stages. Remote Sens 11:387. 10.3390/rs11040387

Zhang Y, Wu X, Wang X et al (2025) Crop root system architecture in drought response. J Genet Genom 52:4–13. 10.1016/j.jgg.2024.05.001 PubMed

Zhu T, Wang L, Rimbert H et al (2021) Optical maps refine the bread wheat PubMed PMC

Zwyrtková J, Blavet N, Doležalová A et al (2022) Draft sequencing crested wheatgrass chromosomes identified evolutionary structural changes and genes and facilitated the development of SSR markers. Int J Mol Sci 23:3191. 10.3390/ijms23063191 PubMed PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...