Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers

. 2022 Mar 16 ; 23 (6) : . [epub] 20220316

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35328613

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827 Ministry of Education, Youth and Sports, Czech Republic

Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.

Zobrazit více v PubMed

Asay K.H., Jensen K.B. Wheatgrasses. Cool.-Seas. Forage Grasses. 1996;34:691–724. doi: 10.2134/agronmonogr34.c22. DOI

Asay K.H., Chatterton N.J., Jensen K.B., Jones T.A., Waldron B.L., Horton W.H. Breeding Improved Grasses for Semiarid Rangelands. Arid. Land Res. Manag. 2003;17:469–478. doi: 10.1080/713936115. DOI

Zhang J., Liu W., Han H., Song L., Bai L., Gao Z., Zhang Y., Yang X., Li X., Gao A., et al. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. 2015;106:129–136. doi: 10.1016/j.ygeno.2015.04.003. PubMed DOI

Dewey D.R. The Genomic System of Classification as a Guide to Intergeneric Hybridization with the Perennial Triticeae. Springer; Boston, MA, USA: 1984. pp. 209–279. DOI

Limin A.E., Fowler D.B. Cold hardiness of forage grasses grown on the Canadian prairies. Can. J. Plant Sci. 1987;67:1111–1115. doi: 10.4141/cjps87-150. DOI

Asay K.H., Johnson D.A. Genetic Variances for Forage Yield in Crested Wheatgrass at Six Levels of Irrigation. Crop Sci. 1990;30:79–82. doi: 10.2135/cropsci1990.0011183X003000010018x. DOI

Dong Y.S., Zhou R.H., Xu S.J., Li L.H., Cauderon Y., Wang R.R.-C. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas. 1992;116:175–178. doi: 10.1111/j.1601-5223.1992.tb00819.x. DOI

Copete A., Moreno R., Cabrera A. Characterization of a world collection of Agropyron cristatum accessions. Genet. Resour. Crop Evol. 2018;65:1455–1469. doi: 10.1007/s10722-018-0630-9. DOI

Li H., Lv M., Song L., Zhang J., Gao A., Li L., Liu W. Production and identification of wheat–Agropyron cristatum 2P translocation lines. PLoS ONE. 2016;11:e0145928. doi: 10.1371/journal.pone.0145928. PubMed DOI PMC

Guo Q., Meng L., Mao P.C., Tian X.X. An assessment of Agropyron cristatum tolerance to cadmium contaminated soil. Biol. Plant. 2014;58:174–178. doi: 10.1007/s10535-013-0359-4. DOI

Asay K.H. Breeding potentials in perennial Triticeae grasses. Hereditas. 2008;116:167–173. doi: 10.1111/j.1601-5223.1992.tb00818.x. DOI

Han H., Liu W., Zhang J., Zhou S., Yang X., Li X., Li L. Identification of P genome chromosomes in Agropyron cristatum and wheat–A. cristatum derivative lines by FISH. Sci. Rep. 2019;9:9712. doi: 10.1038/s41598-019-46197-6. PubMed DOI PMC

Chen Q., Jahier J., Cauderon Y. Production and cytogenetic analysis of BC1, BC2, and BC3 progenies of an intergeneric hybrid between Triticum aestivum (L.) Thell. and tetraploid Agropyron cristatum (L.) Gaertn. Theor. Appl. Genet. 1992;84:698–703. doi: 10.1007/BF00224171. PubMed DOI

Limin A.E., Flower D.B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome. 1990;33:581–584. doi: 10.1139/g90-085. DOI

Soliman M.H., Cabrera A., Sillero J.C., Rubiales D. Genomic constitution and expression of disease resistance in Agropyron cristatum x durum wheat derivatives. Breed. Sci. 2007;57:17–21. doi: 10.1270/jsbbs.57.17. DOI

Zhang J., Zhang J., Liu W., Han H., Lu Y., Yang X., Li X., Li L. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor. Appl. Genet. 2015;128:1827–1837. doi: 10.1007/s00122-015-2550-9. PubMed DOI

Ochoa V., Madrid E., Said M., Rubiales D., Cabrera A. Molecular and cytogenetic characterization of a common wheat–Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica. 2015;201:89–95. doi: 10.1007/s10681-014-1190-5. DOI

Zhang Z., Han H., Liu W., Song L., Zhang J., Zhou S., Yang X., Li X., Li L. Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theor. Appl. Genet. 2019;132:2815–2827. doi: 10.1007/s00122-019-03390-5. PubMed DOI

Wu J., Yang X., Wang H., Li H., Li L., Li X., Liu W. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor. Appl. Genet. 2006;114:13–20. doi: 10.1007/s00122-006-0405-0. PubMed DOI

Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11:252. doi: 10.3389/fpls.2020.00252. PubMed DOI PMC

Chen Q., Jahier J., Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Gaertn. Comptes. Rendus. l’Acad. Des. Sci. Série 3 Sci. La Vie. 1989;308:425–430.

Chen Q., Lu Y.L., Jahier J., Bernard M. Identification of wheat–Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor. Appl. Genet. 1994;89:70–75. doi: 10.1007/BF00226985. PubMed DOI

Luan Y., Wang X., Liu W., Li C., Zhang J., Gao A., Wang Y., Yang X., Li L. Production and identification of wheat–Agropyron cristatum 6P translocation lines. Planta. 2010;232:501–510. doi: 10.1007/s00425-010-1187-9. PubMed DOI

Song L., Jiang L., Han H., Gao A., Yang X., Li L., Liu W. Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE. 2013;8:e69501. doi: 10.1371/journal.pone.0069501. PubMed DOI PMC

Han H., Bai L., Su J., Zhang J., Song L., Gao A., Yang X., Li X., Liu W., Li L. Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE. 2014;9:e91066. doi: 10.1371/journal.pone.0091066. PubMed DOI PMC

Copete A., Cabrera A. Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica. 2017;213:1–9. doi: 10.1007/s10681-017-1981-6. DOI

Rey E., Molnár I., Doležel J. Alien Introgression in Wheat. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Genomics of wild relatives and alien introgressions; pp. 347–381.

Dai C., Zhang J.-P., Wu X.-Y., Yang X.-M., Li X.-Q., Liu W.-H., Gao A.-N., Li L.-H. Development of EST markers specific to Agropyron cristatum chromosome 6P in common wheat background. Acta Agron. Sin. 2013;38:1791–1801. doi: 10.3724/SP.J.1006.2012.01791. DOI

Lu M., Lu Y., Li H., Pan C., Guo Y., Zhang J., Yang X., Li X., Liu W., Li L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE. 2016;11:e0159577. doi: 10.1371/journal.pone.0159577. PubMed DOI PMC

Said M., Parada A.C., Gaál E., Molnár I., Cabrera A., Doležel J., Vrána J. Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor. Appl. Genet. 2019;132:2881–2898. doi: 10.1007/s00122-019-03394-1. PubMed DOI PMC

Taheri S., Abdullah T.L., Yusop M.R., Hanafi M.M., Sahebi M., Azizi P., Shamshiri R.R. Mining and development of novel SSR markers using Next Generation Sequencing (NGS) data in plants. Molecules. 2018;23:399. doi: 10.3390/molecules23020399. PubMed DOI PMC

Córdoba J.M., Chavarro C., Rojas F., Muñoz C., Blair M.W. Identification and mapping of simple sequence repeat markers from common bean (Phaseolus vulgaris L.) bacterial artificial chromosome end sequences for genome characterization and genetic-physical map integration. Plant Genome. 2010;3:154–165. doi: 10.3835/plantgenome2010.06.0013. DOI

Ren Y., Zhao H., Kou Q., Jiang J., Guo S., Zhang H., Hou W., Zou X., Sun H., Gong G., et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE. 2012;7:e29453. doi: 10.1371/journal.pone.0029453. PubMed DOI PMC

Tabkhkar N., Rabiei B., Samizadeh Lahiji H., Hosseini Chaleshtori M. Genetic variation and association analysis of the SSR markers linked to the major drought-yield QTLs of rice. Biochem. Genet. 2018;56:356–374. doi: 10.1007/s10528-018-9849-6. PubMed DOI

Shehata A.I., Al-Ghethar H.A., Al-Homaidan A.A. Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 2009;16:57–62. doi: 10.1016/j.sjbs.2009.10.001. PubMed DOI PMC

Komínková E., Dreiseitl A., Maleèková E., Doležel J., Valárik M. Genetic diversity of Blumeria graminis f. sp. hordei in central Europe and its comparison with australian population. PLoS ONE. 2016;11:e0167099. doi: 10.1371/journal.pone.0167099. PubMed DOI PMC

Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., Van den houwe I., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI

Nyine M., Uwimana B., Swennen R., Batte M., Brown A., Christelová P., Hribová E., Lorenzen J., Doleziel J. Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE. 2017;12:e0178734. doi: 10.1371/journal.pone.0178734. PubMed DOI PMC

Lu X., Adedze Y.M.N., Chofong G.N., Gandeka M., Deng Z., Teng L., Zhang X., Sun G., Si L., Li W. Identification of high-efficiency SSR markers for assessing watermelon genetic purity. J. Genet. 2018;97:1295–1306. doi: 10.1007/s12041-018-1027-4. PubMed DOI

Said M., Hřibová E., Danilova T.V., Karafiátová M., Čížková J., Friebe B., Doležel J., Gill B.S., Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 2018;131:2213–2227. doi: 10.1007/s00122-018-3148-9. PubMed DOI PMC

Doležel J., Číhalíková J., Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–98. doi: 10.1007/BF00198944. PubMed DOI

Mayer K.F.X., Waugh R., Langridge P., Close T.J., Wise R.P., Graner A., Matsumoto T., Sato K., Schulman A., Ariyadasa R., et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–716. doi: 10.1038/nature11543. PubMed DOI

Bartoš J., Paux E., Kofler R., Havránková M., Kopecký D., Suchánková P., Šafář J., Šimková H., Town C.D., Lelley T., et al. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 2008;8:95. doi: 10.1186/1471-2229-8-95. PubMed DOI PMC

Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar’an B., et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013;31:240–246. doi: 10.1038/nbt.2491. PubMed DOI

Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI

Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., Pozniak C.J., Choulet F., Distelfeld A., Poland J., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:aar7191. doi: 10.1126/science.aar7191. PubMed DOI

Lukaszewski A.J., Alberti A., Sharpe A., Kilian A., Stanca A.M., Keller B., Clavijo B.J., Friebe B., Gill B., Wulff B., et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI

Požárková D., Koblížková A., Román B., Torres A.M., Lucretti S., Lysák M., Doležel J., Macas J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol. Plant. 2002;45:337–345. doi: 10.1023/A:1016253214182. DOI

Shatalina M., Wicker T., Buchmann J.P., Oberhaensli S., Šimková H., Doležel J., Keller B. Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno. Plant Biotechnol. J. 2013;11:23–32. doi: 10.1111/pbi.12003. PubMed DOI

Mazaheri M., Kianian P.M.A., Mergoum M., Valentini G.L., Seetan R., Pirseyedi S.M., Kumar A., Gu Y.Q., Stein N., Kubaláková M., et al. Transposable element junctions in marker development and genomic characterization of barley. Plant Genome. 2014;7:plantgenome2013.10.0036. doi: 10.3835/plantgenome2013.10.0036. DOI

Cápal P., Blavet N., Vrána J., Kubaláková M., Doležel J. Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. Plant J. 2015;84:838–844. doi: 10.1111/tpj.13035. PubMed DOI

Šimková H., Svensson J.T., Condamine P., Hřibová E., Suchánková P., Bhat P.R., Bartoš J., Šafář J., Close T.J., Doležel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC

Campbell M.S., Holt C., Moore B., Yandell M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinform. 2014;2014:4.11.1–14.11.39. doi: 10.1002/0471250953.bi0411s48. PubMed DOI PMC

Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., Kopecký D., Till B.J., Doležel J., Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biol. 2020;20:280. doi: 10.1186/s12870-020-02495-0. PubMed DOI PMC

Presting G.G., Malysheva L., Fuchs J., Schubert I. A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–728. doi: 10.1046/j.1365-313x.1998.00341.x. PubMed DOI

Hudakova S., Michalek W., Presting G.G., Hoopen R.T., Dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001;29:5029–5035. doi: 10.1093/nar/29.24.5029. PubMed DOI PMC

Neumann P., Navrátilová A., Koblížková A., Kejnovsk E., Hřibová E., Hobza R., Widmer A., Doležel J., MacAs J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob. DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC

Zwyrtková J., Šimková H., Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 2021;46:107659. doi: 10.1016/j.biotechadv.2020.107659. PubMed DOI

Schreiber M., Wright F., MacKenzie K., Hedley P.E., Schwerdt J.G., Little A., Burton R.A., Fincher G.B., Marshall D., Waugh R., et al. The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-Glucan Synthase gene family. PLoS ONE. 2014;9:e90888. doi: 10.1371/journal.pone.0090888. PubMed DOI PMC

Darko E., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., Molnár I. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 2020;10:22327. doi: 10.1038/s41598-020-79372-1. PubMed DOI PMC

Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., Li X., Liu W., Li L. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 2017;18:2403. doi: 10.3390/ijms18112403. PubMed DOI PMC

Song L., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor. Appl. Genet. 2016;129:1023–1034. doi: 10.1007/s00122-016-2680-8. PubMed DOI

Matsumoto T., Wu J., Kanamori H., Katayose Y., Fujisawa M., Namiki N., Mizuno H., Yamamoto K., Antonio B.A., Baba T., et al. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI

Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI

Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez-González R.H., De Oliveira R., Mayer K.F.X., Paux E., Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC

Liu Q., Li X., Zhou X., Li M., Zhang F., Schwarzacher T., Heslop-Harrison J.S. The repetitive DNA landscape in Avena (Poaceae): Chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biol. 2019;19:226. doi: 10.1186/s12870-019-1769-z. PubMed DOI PMC

Zhang Y., Fan C., Li S., Chen Y., Wang R.R.C., Zhang X., Han F., Hu Z. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Front. Plant Sci. 2017;8:1706. doi: 10.3389/fpls.2017.01706. PubMed DOI PMC

Raskina O. Transposable elements in the organization and diversification of the genome of Aegilops speltoides Tausch (Poaceae, Triticeae) Int. J. Genom. 2018;2018:4373089. doi: 10.1155/2018/4373089. PubMed DOI PMC

Sanei M., Pickering R., Kumke K., Nasuda S., Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA. 2011;108:E498–E505. doi: 10.1073/pnas.1103190108. PubMed DOI PMC

Quraishi U.M., Abrouk M., Bolot S., Pont C., Throude M., Guilhot N., Confolent C., Bortolini F., Praud S., Murigneux A., et al. Genomics in cereals: From genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct. Integr. Genom. 2009;9:473–484. doi: 10.1007/s10142-009-0129-8. PubMed DOI

Howard T., Rejab N.A., Griffiths S., Leigh F., Leverington-Waite M., Simmonds J., Uauy C., Trafford K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 2011;62:2217–2228. doi: 10.1093/jxb/erq423. PubMed DOI PMC

Naranjo T. Variable patterning of chromatin remodeling, telomere positioning, synapsis, and chiasma formation of individual rye chromosomes in meiosis of wheat-rye additions. Front. Plant Sci. 2018;9:880. doi: 10.3389/fpls.2018.00880. PubMed DOI PMC

Perničková K., Koláčková V., Lukaszewski A.J., Fan C., Vrána J., Duchoslav M., Jenkins G., Phillips D., Šamajová O., Sedlářová M., et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 2019;20:1448. doi: 10.3390/ijms20061448. PubMed DOI PMC

Danilova T.V., Friebe B., Gill B.S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor. Appl. Genet. 2014;127:715–730. doi: 10.1007/s00122-013-2253-z. PubMed DOI PMC

Luo M.C., Deal K.R., Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., Coleman-Derr D., Conley E.J., et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. USA. 2009;106:15780–15785. doi: 10.1073/pnas.0908195106. PubMed DOI PMC

Mellish A., Coulman B., Ferdinandez Y. Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci. 2002;42:1662–1668. doi: 10.2135/cropsci2002.1662. DOI

Wang W.W., Tan Z.Y., Xu Y.Q., Zhu A.A., Li Y., Yao J., Tian R., Fang X.M., Liu X.Y., Tian Y.M., et al. Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map. Sci. Rep. 2017;7:7640. doi: 10.1038/s41598-017-08006-w. PubMed DOI PMC

Tang H., Lyons E., Town C.D. Optical mapping in plant comparative genomics. Gigascience. 2015;4:3. doi: 10.1186/s13742-015-0044-y. PubMed DOI PMC

Wang W., Guan R., Liu X., Zhang H., Song B., Xu Q., Fan G., Chen W., Wu X., Liu X., et al. Chromosome level comparative analysis of Brassica genomes. Plant Mol. Biol. 2019;99:237–249. doi: 10.1007/s11103-018-0814-x. PubMed DOI

Jiao W.B., Schneeberger K. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 2017;36:64–70. doi: 10.1016/j.pbi.2017.02.002. PubMed DOI

Li S., Yang G., Yang S., Just J., Yan H., Zhou N., Jian H., Wang Q., Chen M., Qiu X., et al. The development of a high-density genetic map significantly improves the quality of reference genome assemblies for rose. Sci. Rep. 2019;9:5985. doi: 10.1038/s41598-019-42428-y. PubMed DOI PMC

Wang X., Liu H., Pang M., Fu B., Yu X., He S., Tong J. Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix) Sci. Rep. 2019;9:17506. doi: 10.1038/s41598-019-53469-8. PubMed DOI PMC

Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. doi: 10.1186/s13059-020-1935-5. PubMed DOI PMC

Chawla H.S., Lee H., Gabur I., Tamilselvan-Nattar-Amutha S., Obermeier C., Schiessl S., Song J., Liu K., Guo L., Parkin I., et al. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol. J. 2020;19:240–250. doi: 10.1111/pbi.13456. PubMed DOI PMC

Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome. 2019;12:180096. doi: 10.3835/plantgenome2018.12.0096. PubMed DOI

Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC

Boisvert S., Laviolette F., Corbeil J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 2010;17:1401–1415. doi: 10.1089/cmb.2009.0238. PubMed DOI PMC

Thiel T., Michalek W., Varshney R.K., Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2003;106:411–422. doi: 10.1007/s00122-002-1031-0. PubMed DOI

Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC

Wu T.D., Watanabe C.K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–1875. doi: 10.1093/bioinformatics/bti310. PubMed DOI

Smit A., Hubley R., Green P. RepeatMasker Open-4.0. 2013–2015. 2013. [(accessed on 12 February 2022)]. Available online: http://www.repeatmasker.org.

Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC

Bolser D.M., Staines D.M., Perry E., Kersey P.J. Methods in Molecular Biology. Volume 1533. Humana Press Inc.; Totowa, NJ, USA: 2017. Ensembl plants: Integrating tools for visualizing, mining, and analyzing plant genomic data; pp. 1–31. PubMed

Mascher M. Pseudomolecules and Annotation of the Second Version of the Reference Genome Sequence Assembly of Barley cv. Morex [Morex V2] IPK Gatersleben; Gatersleben, Germany: 2019. e!DAL-Plant Genomics & Phenomics Research Data Repository (2019-05-09) DOI

Hunter S., Apweiler R., Attwood T.K., Bairoch A., Bateman A., Binns D., Bork P., Das U., Daugherty L., Duquenne L., et al. InterPro: The integrative protein signature database. Nucleic Acids Res. 2008;37:D211–D215. doi: 10.1093/nar/gkn785. PubMed DOI PMC

Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Consortium T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC

Miele V., Penel S., Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinform. 2011;12:116. doi: 10.1186/1471-2105-12-116. PubMed DOI PMC

Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC

Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinf. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI

Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI

Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI

Anisimova M., Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006;55:539–552. doi: 10.1080/10635150600755453. PubMed DOI

Kubaláková M., Macas J., Doležel J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 1997;94:758–763. doi: 10.1007/s001220050475. DOI

Nagaki K., Cheng Z., Ouyang S., Talbert P.B., Kim M., Jones K.M., Henikoff S., Buell C.R., Jiang J. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 2004;36:138–145. doi: 10.1038/ng1289. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...