Draft Sequencing Crested Wheatgrass Chromosomes Identified Evolutionary Structural Changes and Genes and Facilitated the Development of SSR Markers
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000827
Ministry of Education, Youth and Sports, Czech Republic
PubMed
35328613
PubMed Central
PMC8948999
DOI
10.3390/ijms23063191
PII: ijms23063191
Knihovny.cz E-zdroje
- Klíčová slova
- Agropyron cristatum, Illumina sequencing, SSR-marker development, annotation, chromosome sorting, chromosome-specific sequences,
- MeSH
- Agropyron * genetika MeSH
- chromozomy rostlin genetika MeSH
- odolnost vůči nemocem genetika MeSH
- pšenice genetika MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
Crested wheatgrass (Agropyron cristatum), a wild relative of wheat, is an attractive source of genes and alleles for their improvement. Its wider use is hampered by limited knowledge of its complex genome. In this work, individual chromosomes were purified by flow sorting, and DNA shotgun sequencing was performed. The annotation of chromosome-specific sequences characterized the DNA-repeat content and led to the identification of genic sequences. Among them, genic sequences homologous to genes conferring plant disease resistance and involved in plant tolerance to biotic and abiotic stress were identified. Genes belonging to the important groups for breeders involved in different functional categories were found. The analysis of the DNA-repeat content identified a new LTR element, Agrocen, which is enriched in centromeric regions. The colocalization of the element with the centromeric histone H3 variant CENH3 suggested its functional role in the grass centromere. Finally, 159 polymorphic simple-sequence-repeat (SSR) markers were identified, with 72 of them being chromosome- or chromosome-arm-specific, 16 mapping to more than one chromosome, and 71 mapping to all the Agropyron chromosomes. The markers were used to characterize orthologous relationships between A. cristatum and common wheat that will facilitate the introgression breeding of wheat using A. cristatum.
Zobrazit více v PubMed
Asay K.H., Jensen K.B. Wheatgrasses. Cool.-Seas. Forage Grasses. 1996;34:691–724. doi: 10.2134/agronmonogr34.c22. DOI
Asay K.H., Chatterton N.J., Jensen K.B., Jones T.A., Waldron B.L., Horton W.H. Breeding Improved Grasses for Semiarid Rangelands. Arid. Land Res. Manag. 2003;17:469–478. doi: 10.1080/713936115. DOI
Zhang J., Liu W., Han H., Song L., Bai L., Gao Z., Zhang Y., Yang X., Li X., Gao A., et al. De novo transcriptome sequencing of Agropyron cristatum to identify available gene resources for the enhancement of wheat. Genomics. 2015;106:129–136. doi: 10.1016/j.ygeno.2015.04.003. PubMed DOI
Dewey D.R. The Genomic System of Classification as a Guide to Intergeneric Hybridization with the Perennial Triticeae. Springer; Boston, MA, USA: 1984. pp. 209–279. DOI
Limin A.E., Fowler D.B. Cold hardiness of forage grasses grown on the Canadian prairies. Can. J. Plant Sci. 1987;67:1111–1115. doi: 10.4141/cjps87-150. DOI
Asay K.H., Johnson D.A. Genetic Variances for Forage Yield in Crested Wheatgrass at Six Levels of Irrigation. Crop Sci. 1990;30:79–82. doi: 10.2135/cropsci1990.0011183X003000010018x. DOI
Dong Y.S., Zhou R.H., Xu S.J., Li L.H., Cauderon Y., Wang R.R.-C. Desirable characteristics in perennial Triticeae collected in China for wheat improvement. Hereditas. 1992;116:175–178. doi: 10.1111/j.1601-5223.1992.tb00819.x. DOI
Copete A., Moreno R., Cabrera A. Characterization of a world collection of Agropyron cristatum accessions. Genet. Resour. Crop Evol. 2018;65:1455–1469. doi: 10.1007/s10722-018-0630-9. DOI
Li H., Lv M., Song L., Zhang J., Gao A., Li L., Liu W. Production and identification of wheat–Agropyron cristatum 2P translocation lines. PLoS ONE. 2016;11:e0145928. doi: 10.1371/journal.pone.0145928. PubMed DOI PMC
Guo Q., Meng L., Mao P.C., Tian X.X. An assessment of Agropyron cristatum tolerance to cadmium contaminated soil. Biol. Plant. 2014;58:174–178. doi: 10.1007/s10535-013-0359-4. DOI
Asay K.H. Breeding potentials in perennial Triticeae grasses. Hereditas. 2008;116:167–173. doi: 10.1111/j.1601-5223.1992.tb00818.x. DOI
Han H., Liu W., Zhang J., Zhou S., Yang X., Li X., Li L. Identification of P genome chromosomes in Agropyron cristatum and wheat–A. cristatum derivative lines by FISH. Sci. Rep. 2019;9:9712. doi: 10.1038/s41598-019-46197-6. PubMed DOI PMC
Chen Q., Jahier J., Cauderon Y. Production and cytogenetic analysis of BC1, BC2, and BC3 progenies of an intergeneric hybrid between Triticum aestivum (L.) Thell. and tetraploid Agropyron cristatum (L.) Gaertn. Theor. Appl. Genet. 1992;84:698–703. doi: 10.1007/BF00224171. PubMed DOI
Limin A.E., Flower D.B. An interspecific hybrid and amphiploid produced from Triticum aestivum crosses with Agropyron cristatum and Agropyron desertorum. Genome. 1990;33:581–584. doi: 10.1139/g90-085. DOI
Soliman M.H., Cabrera A., Sillero J.C., Rubiales D. Genomic constitution and expression of disease resistance in Agropyron cristatum x durum wheat derivatives. Breed. Sci. 2007;57:17–21. doi: 10.1270/jsbbs.57.17. DOI
Zhang J., Zhang J., Liu W., Han H., Lu Y., Yang X., Li X., Li L. Introgression of Agropyron cristatum 6P chromosome segment into common wheat for enhanced thousand-grain weight and spike length. Theor. Appl. Genet. 2015;128:1827–1837. doi: 10.1007/s00122-015-2550-9. PubMed DOI
Ochoa V., Madrid E., Said M., Rubiales D., Cabrera A. Molecular and cytogenetic characterization of a common wheat–Agropyron cristatum chromosome translocation conferring resistance to leaf rust. Euphytica. 2015;201:89–95. doi: 10.1007/s10681-014-1190-5. DOI
Zhang Z., Han H., Liu W., Song L., Zhang J., Zhou S., Yang X., Li X., Li L. Deletion mapping and verification of an enhanced-grain number per spike locus from the 6PL chromosome arm of Agropyron cristatum in common wheat. Theor. Appl. Genet. 2019;132:2815–2827. doi: 10.1007/s00122-019-03390-5. PubMed DOI
Wu J., Yang X., Wang H., Li H., Li L., Li X., Liu W. The introgression of chromosome 6P specifying for increased numbers of florets and kernels from Agropyron cristatum into wheat. Theor. Appl. Genet. 2006;114:13–20. doi: 10.1007/s00122-006-0405-0. PubMed DOI
Hao M., Zhang L., Ning S., Huang L., Yuan Z., Wu B., Yan Z., Dai S., Jiang B., Zheng Y., et al. The resurgence of introgression breeding, as exemplified in wheat improvement. Front. Plant Sci. 2020;11:252. doi: 10.3389/fpls.2020.00252. PubMed DOI PMC
Chen Q., Jahier J., Cauderon Y. Production and cytogenetical studies of hybrids between Triticum aestivum L. Thell and Agropyron cristatum (L.) Gaertn. Comptes. Rendus. l’Acad. Des. Sci. Série 3 Sci. La Vie. 1989;308:425–430.
Chen Q., Lu Y.L., Jahier J., Bernard M. Identification of wheat–Agropyron cristatum monosomic addition lines by RFLP analysis using a set of assigned wheat DNA probes. Theor. Appl. Genet. 1994;89:70–75. doi: 10.1007/BF00226985. PubMed DOI
Luan Y., Wang X., Liu W., Li C., Zhang J., Gao A., Wang Y., Yang X., Li L. Production and identification of wheat–Agropyron cristatum 6P translocation lines. Planta. 2010;232:501–510. doi: 10.1007/s00425-010-1187-9. PubMed DOI
Song L., Jiang L., Han H., Gao A., Yang X., Li L., Liu W. Efficient induction of wheat–Agropyron cristatum 6P translocation lines and GISH detection. PLoS ONE. 2013;8:e69501. doi: 10.1371/journal.pone.0069501. PubMed DOI PMC
Han H., Bai L., Su J., Zhang J., Song L., Gao A., Yang X., Li X., Liu W., Li L. Genetic rearrangements of six wheat–Agropyron cristatum 6P addition lines revealed by molecular markers. PLoS ONE. 2014;9:e91066. doi: 10.1371/journal.pone.0091066. PubMed DOI PMC
Copete A., Cabrera A. Chromosomal location of genes for resistance to powdery mildew in Agropyron cristatum and mapping of conserved orthologous set molecular markers. Euphytica. 2017;213:1–9. doi: 10.1007/s10681-017-1981-6. DOI
Rey E., Molnár I., Doležel J. Alien Introgression in Wheat. Springer International Publishing; Berlin/Heidelberg, Germany: 2015. Genomics of wild relatives and alien introgressions; pp. 347–381.
Dai C., Zhang J.-P., Wu X.-Y., Yang X.-M., Li X.-Q., Liu W.-H., Gao A.-N., Li L.-H. Development of EST markers specific to Agropyron cristatum chromosome 6P in common wheat background. Acta Agron. Sin. 2013;38:1791–1801. doi: 10.3724/SP.J.1006.2012.01791. DOI
Lu M., Lu Y., Li H., Pan C., Guo Y., Zhang J., Yang X., Li X., Liu W., Li L. Transferring desirable genes from Agropyron cristatum 7P chromosome into common wheat. PLoS ONE. 2016;11:e0159577. doi: 10.1371/journal.pone.0159577. PubMed DOI PMC
Said M., Parada A.C., Gaál E., Molnár I., Cabrera A., Doležel J., Vrána J. Uncovering homeologous relationships between tetraploid Agropyron cristatum and bread wheat genomes using COS markers. Theor. Appl. Genet. 2019;132:2881–2898. doi: 10.1007/s00122-019-03394-1. PubMed DOI PMC
Taheri S., Abdullah T.L., Yusop M.R., Hanafi M.M., Sahebi M., Azizi P., Shamshiri R.R. Mining and development of novel SSR markers using Next Generation Sequencing (NGS) data in plants. Molecules. 2018;23:399. doi: 10.3390/molecules23020399. PubMed DOI PMC
Córdoba J.M., Chavarro C., Rojas F., Muñoz C., Blair M.W. Identification and mapping of simple sequence repeat markers from common bean (Phaseolus vulgaris L.) bacterial artificial chromosome end sequences for genome characterization and genetic-physical map integration. Plant Genome. 2010;3:154–165. doi: 10.3835/plantgenome2010.06.0013. DOI
Ren Y., Zhao H., Kou Q., Jiang J., Guo S., Zhang H., Hou W., Zou X., Sun H., Gong G., et al. A high resolution genetic map anchoring scaffolds of the sequenced watermelon genome. PLoS ONE. 2012;7:e29453. doi: 10.1371/journal.pone.0029453. PubMed DOI PMC
Tabkhkar N., Rabiei B., Samizadeh Lahiji H., Hosseini Chaleshtori M. Genetic variation and association analysis of the SSR markers linked to the major drought-yield QTLs of rice. Biochem. Genet. 2018;56:356–374. doi: 10.1007/s10528-018-9849-6. PubMed DOI
Shehata A.I., Al-Ghethar H.A., Al-Homaidan A.A. Application of simple sequence repeat (SSR) markers for molecular diversity and heterozygosity analysis in maize inbred lines. Saudi J. Biol. Sci. 2009;16:57–62. doi: 10.1016/j.sjbs.2009.10.001. PubMed DOI PMC
Komínková E., Dreiseitl A., Maleèková E., Doležel J., Valárik M. Genetic diversity of Blumeria graminis f. sp. hordei in central Europe and its comparison with australian population. PLoS ONE. 2016;11:e0167099. doi: 10.1371/journal.pone.0167099. PubMed DOI PMC
Christelová P., De Langhe E., Hřibová E., Čížková J., Sardos J., Hušáková M., Van den houwe I., Sutanto A., Kepler A.K., Swennen R., et al. Molecular and cytological characterization of the global Musa germplasm collection provides insights into the treasure of banana diversity. Biodivers. Conserv. 2017;26:801–824. doi: 10.1007/s10531-016-1273-9. DOI
Nyine M., Uwimana B., Swennen R., Batte M., Brown A., Christelová P., Hribová E., Lorenzen J., Doleziel J. Trait variation and genetic diversity in a banana genomic selection training population. PLoS ONE. 2017;12:e0178734. doi: 10.1371/journal.pone.0178734. PubMed DOI PMC
Lu X., Adedze Y.M.N., Chofong G.N., Gandeka M., Deng Z., Teng L., Zhang X., Sun G., Si L., Li W. Identification of high-efficiency SSR markers for assessing watermelon genetic purity. J. Genet. 2018;97:1295–1306. doi: 10.1007/s12041-018-1027-4. PubMed DOI
Said M., Hřibová E., Danilova T.V., Karafiátová M., Čížková J., Friebe B., Doležel J., Gill B.S., Vrána J. The Agropyron cristatum karyotype, chromosome structure and cross-genome homoeology as revealed by fluorescence in situ hybridization with tandem repeats and wheat single-gene probes. Theor. Appl. Genet. 2018;131:2213–2227. doi: 10.1007/s00122-018-3148-9. PubMed DOI PMC
Doležel J., Číhalíková J., Lucretti S. A high-yield procedure for isolation of metaphase chromosomes from root tips of Vicia faba L. Planta. 1992;188:93–98. doi: 10.1007/BF00198944. PubMed DOI
Mayer K.F.X., Waugh R., Langridge P., Close T.J., Wise R.P., Graner A., Matsumoto T., Sato K., Schulman A., Ariyadasa R., et al. A physical, genetic and functional sequence assembly of the barley genome. Nature. 2012;491:711–716. doi: 10.1038/nature11543. PubMed DOI
Bartoš J., Paux E., Kofler R., Havránková M., Kopecký D., Suchánková P., Šafář J., Šimková H., Town C.D., Lelley T., et al. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 2008;8:95. doi: 10.1186/1471-2229-8-95. PubMed DOI PMC
Varshney R.K., Song C., Saxena R.K., Azam S., Yu S., Sharpe A.G., Cannon S., Baek J., Rosen B.D., Tar’an B., et al. Draft genome sequence of chickpea (Cicer arietinum) provides a resource for trait improvement. Nat. Biotechnol. 2013;31:240–246. doi: 10.1038/nbt.2491. PubMed DOI
Kreplak J., Madoui M.A., Cápal P., Novák P., Labadie K., Aubert G., Bayer P.E., Gali K.K., Syme R.A., Main D., et al. A reference genome for pea provides insight into legume genome evolution. Nat. Genet. 2019;51:1411–1422. doi: 10.1038/s41588-019-0480-1. PubMed DOI
Appels R., Eversole K., Feuillet C., Keller B., Rogers J., Stein N., Pozniak C.J., Choulet F., Distelfeld A., Poland J., et al. Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:aar7191. doi: 10.1126/science.aar7191. PubMed DOI
Lukaszewski A.J., Alberti A., Sharpe A., Kilian A., Stanca A.M., Keller B., Clavijo B.J., Friebe B., Gill B., Wulff B., et al. A chromosome-based draft sequence of the hexaploid bread wheat (Triticum aestivum) genome. Science. 2014;345:1251788. doi: 10.1126/science.1251788. PubMed DOI
Požárková D., Koblížková A., Román B., Torres A.M., Lucretti S., Lysák M., Doležel J., Macas J. Development and characterization of microsatellite markers from chromosome 1-specific DNA libraries of Vicia faba. Biol. Plant. 2002;45:337–345. doi: 10.1023/A:1016253214182. DOI
Shatalina M., Wicker T., Buchmann J.P., Oberhaensli S., Šimková H., Doležel J., Keller B. Genotype-specific SNP map based on whole chromosome 3B sequence information from wheat cultivars Arina and Forno. Plant Biotechnol. J. 2013;11:23–32. doi: 10.1111/pbi.12003. PubMed DOI
Mazaheri M., Kianian P.M.A., Mergoum M., Valentini G.L., Seetan R., Pirseyedi S.M., Kumar A., Gu Y.Q., Stein N., Kubaláková M., et al. Transposable element junctions in marker development and genomic characterization of barley. Plant Genome. 2014;7:plantgenome2013.10.0036. doi: 10.3835/plantgenome2013.10.0036. DOI
Cápal P., Blavet N., Vrána J., Kubaláková M., Doležel J. Multiple displacement amplification of the DNA from single flow-sorted plant chromosome. Plant J. 2015;84:838–844. doi: 10.1111/tpj.13035. PubMed DOI
Šimková H., Svensson J.T., Condamine P., Hřibová E., Suchánková P., Bhat P.R., Bartoš J., Šafář J., Close T.J., Doležel J. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Campbell M.S., Holt C., Moore B., Yandell M. Genome annotation and curation using MAKER and MAKER-P. Curr. Protoc. Bioinform. 2014;2014:4.11.1–14.11.39. doi: 10.1002/0471250953.bi0411s48. PubMed DOI PMC
Zwyrtková J., Němečková A., Čížková J., Holušová K., Kapustová V., Svačina R., Kopecký D., Till B.J., Doležel J., Hřibová E. Comparative analyses of DNA repeats and identification of a novel Fesreba centromeric element in fescues and ryegrasses. BMC Plant Biol. 2020;20:280. doi: 10.1186/s12870-020-02495-0. PubMed DOI PMC
Presting G.G., Malysheva L., Fuchs J., Schubert I. A TY3/GYPSY retrotransposon-like sequence localizes to the centromeric regions of cereal chromosomes. Plant J. 1998;16:721–728. doi: 10.1046/j.1365-313x.1998.00341.x. PubMed DOI
Hudakova S., Michalek W., Presting G.G., Hoopen R.T., Dos Santos K., Jasencakova Z., Schubert I. Sequence organization of barley centromeres. Nucleic Acids Res. 2001;29:5029–5035. doi: 10.1093/nar/29.24.5029. PubMed DOI PMC
Neumann P., Navrátilová A., Koblížková A., Kejnovsk E., Hřibová E., Hobza R., Widmer A., Doležel J., MacAs J. Plant centromeric retrotransposons: A structural and cytogenetic perspective. Mob. DNA. 2011;2:4. doi: 10.1186/1759-8753-2-4. PubMed DOI PMC
Zwyrtková J., Šimková H., Doležel J. Chromosome genomics uncovers plant genome organization and function. Biotechnol. Adv. 2021;46:107659. doi: 10.1016/j.biotechadv.2020.107659. PubMed DOI
Schreiber M., Wright F., MacKenzie K., Hedley P.E., Schwerdt J.G., Little A., Burton R.A., Fincher G.B., Marshall D., Waugh R., et al. The barley genome sequence assembly reveals three additional members of the CslF (1,3;1,4)-β-Glucan Synthase gene family. PLoS ONE. 2014;9:e90888. doi: 10.1371/journal.pone.0090888. PubMed DOI PMC
Darko E., Khalil R., Dobi Z., Kovács V., Szalai G., Janda T., Molnár I. Addition of Aegilops biuncialis chromosomes 2M or 3M improves the salt tolerance of wheat in different way. Sci. Rep. 2020;10:22327. doi: 10.1038/s41598-020-79372-1. PubMed DOI PMC
Zhang Z., Song L., Han H., Zhou S., Zhang J., Yang X., Li X., Liu W., Li L. Physical localization of a locus from Agropyron cristatum conferring resistance to stripe rust in common wheat. Int. J. Mol. Sci. 2017;18:2403. doi: 10.3390/ijms18112403. PubMed DOI PMC
Song L., Lu Y., Zhang J., Pan C., Yang X., Li X., Liu W., Li L. Physical mapping of Agropyron cristatum chromosome 6P using deletion lines in common wheat background. Theor. Appl. Genet. 2016;129:1023–1034. doi: 10.1007/s00122-016-2680-8. PubMed DOI
Matsumoto T., Wu J., Kanamori H., Katayose Y., Fujisawa M., Namiki N., Mizuno H., Yamamoto K., Antonio B.A., Baba T., et al. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Schnable P.S., Ware D., Fulton R.S., Stein J.C., Wei F., Pasternak S., Liang C., Zhang J., Fulton L., Graves T.A., et al. The B73 maize genome: Complexity, diversity, and dynamics. Science. 2009;326:1112–1115. doi: 10.1126/science.1178534. PubMed DOI
Wicker T., Gundlach H., Spannagl M., Uauy C., Borrill P., Ramírez-González R.H., De Oliveira R., Mayer K.F.X., Paux E., Choulet F. Impact of transposable elements on genome structure and evolution in bread wheat. Genome Biol. 2018;19:103. doi: 10.1186/s13059-018-1479-0. PubMed DOI PMC
Liu Q., Li X., Zhou X., Li M., Zhang F., Schwarzacher T., Heslop-Harrison J.S. The repetitive DNA landscape in Avena (Poaceae): Chromosome and genome evolution defined by major repeat classes in whole-genome sequence reads. BMC Plant Biol. 2019;19:226. doi: 10.1186/s12870-019-1769-z. PubMed DOI PMC
Zhang Y., Fan C., Li S., Chen Y., Wang R.R.C., Zhang X., Han F., Hu Z. The diversity of sequence and chromosomal distribution of new transposable element-related segments in the rye genome revealed by FISH and lineage annotation. Front. Plant Sci. 2017;8:1706. doi: 10.3389/fpls.2017.01706. PubMed DOI PMC
Raskina O. Transposable elements in the organization and diversification of the genome of Aegilops speltoides Tausch (Poaceae, Triticeae) Int. J. Genom. 2018;2018:4373089. doi: 10.1155/2018/4373089. PubMed DOI PMC
Sanei M., Pickering R., Kumke K., Nasuda S., Houben A. Loss of centromeric histone H3 (CENH3) from centromeres precedes uniparental chromosome elimination in interspecific barley hybrids. Proc. Natl. Acad. Sci. USA. 2011;108:E498–E505. doi: 10.1073/pnas.1103190108. PubMed DOI PMC
Quraishi U.M., Abrouk M., Bolot S., Pont C., Throude M., Guilhot N., Confolent C., Bortolini F., Praud S., Murigneux A., et al. Genomics in cereals: From genome-wide conserved orthologous set (COS) sequences to candidate genes for trait dissection. Funct. Integr. Genom. 2009;9:473–484. doi: 10.1007/s10142-009-0129-8. PubMed DOI
Howard T., Rejab N.A., Griffiths S., Leigh F., Leverington-Waite M., Simmonds J., Uauy C., Trafford K. Identification of a major QTL controlling the content of B-type starch granules in Aegilops. J. Exp. Bot. 2011;62:2217–2228. doi: 10.1093/jxb/erq423. PubMed DOI PMC
Naranjo T. Variable patterning of chromatin remodeling, telomere positioning, synapsis, and chiasma formation of individual rye chromosomes in meiosis of wheat-rye additions. Front. Plant Sci. 2018;9:880. doi: 10.3389/fpls.2018.00880. PubMed DOI PMC
Perničková K., Koláčková V., Lukaszewski A.J., Fan C., Vrána J., Duchoslav M., Jenkins G., Phillips D., Šamajová O., Sedlářová M., et al. Instability of alien chromosome introgressions in wheat associated with improper positioning in the nucleus. Int. J. Mol. Sci. 2019;20:1448. doi: 10.3390/ijms20061448. PubMed DOI PMC
Danilova T.V., Friebe B., Gill B.S. Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor. Appl. Genet. 2014;127:715–730. doi: 10.1007/s00122-013-2253-z. PubMed DOI PMC
Luo M.C., Deal K.R., Akhunov E.D., Akhunova A.R., Anderson O.D., Anderson J.A., Blake N., Clegg M.T., Coleman-Derr D., Conley E.J., et al. Genome comparisons reveal a dominant mechanism of chromosome number reduction in grasses and accelerated genome evolution in Triticeae. Proc. Natl. Acad. Sci. USA. 2009;106:15780–15785. doi: 10.1073/pnas.0908195106. PubMed DOI PMC
Mellish A., Coulman B., Ferdinandez Y. Genetic relationships among selected crested wheatgrass cultivars and species determined on the basis of AFLP markers. Crop Sci. 2002;42:1662–1668. doi: 10.2135/cropsci2002.1662. DOI
Wang W.W., Tan Z.Y., Xu Y.Q., Zhu A.A., Li Y., Yao J., Tian R., Fang X.M., Liu X.Y., Tian Y.M., et al. Chromosome structural variation of two cultivated tetraploid cottons and their ancestral diploid species based on a new high-density genetic map. Sci. Rep. 2017;7:7640. doi: 10.1038/s41598-017-08006-w. PubMed DOI PMC
Tang H., Lyons E., Town C.D. Optical mapping in plant comparative genomics. Gigascience. 2015;4:3. doi: 10.1186/s13742-015-0044-y. PubMed DOI PMC
Wang W., Guan R., Liu X., Zhang H., Song B., Xu Q., Fan G., Chen W., Wu X., Liu X., et al. Chromosome level comparative analysis of Brassica genomes. Plant Mol. Biol. 2019;99:237–249. doi: 10.1007/s11103-018-0814-x. PubMed DOI
Jiao W.B., Schneeberger K. The impact of third generation genomic technologies on plant genome assembly. Curr. Opin. Plant Biol. 2017;36:64–70. doi: 10.1016/j.pbi.2017.02.002. PubMed DOI
Li S., Yang G., Yang S., Just J., Yan H., Zhou N., Jian H., Wang Q., Chen M., Qiu X., et al. The development of a high-density genetic map significantly improves the quality of reference genome assemblies for rose. Sci. Rep. 2019;9:5985. doi: 10.1038/s41598-019-42428-y. PubMed DOI PMC
Wang X., Liu H., Pang M., Fu B., Yu X., He S., Tong J. Construction of a high-density genetic linkage map and mapping of quantitative trait loci for growth-related traits in silver carp (Hypophthalmichthys molitrix) Sci. Rep. 2019;9:17506. doi: 10.1038/s41598-019-53469-8. PubMed DOI PMC
Amarasinghe S.L., Su S., Dong X., Zappia L., Ritchie M.E., Gouil Q. Opportunities and challenges in long-read sequencing data analysis. Genome Biol. 2020;21:30. doi: 10.1186/s13059-020-1935-5. PubMed DOI PMC
Chawla H.S., Lee H., Gabur I., Tamilselvan-Nattar-Amutha S., Obermeier C., Schiessl S., Song J., Liu K., Guo L., Parkin I., et al. Long-read sequencing reveals widespread intragenic structural variants in a recent allopolyploid crop plant. Plant Biotechnol. J. 2020;19:240–250. doi: 10.1111/pbi.13456. PubMed DOI PMC
Said M., Kubaláková M., Karafiátová M., Molnár I., Doležel J., Vrána J. Dissecting the complex genome of crested wheatgrass by chromosome flow sorting. Plant Genome. 2019;12:180096. doi: 10.3835/plantgenome2018.12.0096. PubMed DOI
Bolger A.M., Lohse M., Usadel B. Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics. 2014;30:2114–2120. doi: 10.1093/bioinformatics/btu170. PubMed DOI PMC
Boisvert S., Laviolette F., Corbeil J. Ray: Simultaneous assembly of reads from a mix of high-throughput sequencing technologies. J. Comput. Biol. 2010;17:1401–1415. doi: 10.1089/cmb.2009.0238. PubMed DOI PMC
Thiel T., Michalek W., Varshney R.K., Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2003;106:411–422. doi: 10.1007/s00122-002-1031-0. PubMed DOI
Untergasser A., Cutcutache I., Koressaar T., Ye J., Faircloth B.C., Remm M., Rozen S.G. Primer3—new capabilities and interfaces. Nucleic Acids Res. 2012;40:e115. doi: 10.1093/nar/gks596. PubMed DOI PMC
Wu T.D., Watanabe C.K. GMAP: A genomic mapping and alignment program for mRNA and EST sequences. Bioinformatics. 2005;21:1859–1875. doi: 10.1093/bioinformatics/bti310. PubMed DOI
Smit A., Hubley R., Green P. RepeatMasker Open-4.0. 2013–2015. 2013. [(accessed on 12 February 2022)]. Available online: http://www.repeatmasker.org.
Stanke M., Steinkamp R., Waack S., Morgenstern B. AUGUSTUS: A web server for gene finding in eukaryotes. Nucleic Acids Res. 2004;32:W309–W312. doi: 10.1093/nar/gkh379. PubMed DOI PMC
Bolser D.M., Staines D.M., Perry E., Kersey P.J. Methods in Molecular Biology. Volume 1533. Humana Press Inc.; Totowa, NJ, USA: 2017. Ensembl plants: Integrating tools for visualizing, mining, and analyzing plant genomic data; pp. 1–31. PubMed
Mascher M. Pseudomolecules and Annotation of the Second Version of the Reference Genome Sequence Assembly of Barley cv. Morex [Morex V2] IPK Gatersleben; Gatersleben, Germany: 2019. e!DAL-Plant Genomics & Phenomics Research Data Repository (2019-05-09) DOI
Hunter S., Apweiler R., Attwood T.K., Bairoch A., Bateman A., Binns D., Bork P., Das U., Daugherty L., Duquenne L., et al. InterPro: The integrative protein signature database. Nucleic Acids Res. 2008;37:D211–D215. doi: 10.1093/nar/gkn785. PubMed DOI PMC
Altschul S.F., Madden T.L., Schäffer A.A., Zhang J., Zhang Z., Miller W., Lipman D.J. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Consortium T.U. UniProt: A worldwide hub of protein knowledge. Nucleic Acids Res. 2018;47:D506–D515. doi: 10.1093/nar/gky1049. PubMed DOI PMC
Miele V., Penel S., Duret L. Ultra-fast sequence clustering from similarity networks with SiLiX. BMC Bioinform. 2011;12:116. doi: 10.1186/1471-2105-12-116. PubMed DOI PMC
Novák P., Neumann P., Macas J. Graph-based clustering and characterization of repetitive sequences in next-generation sequencing data. BMC Bioinform. 2010;11:378. doi: 10.1186/1471-2105-11-378. PubMed DOI PMC
Katoh K., Toh H. Recent developments in the MAFFT multiple sequence alignment program. Brief. Bioinf. 2008;9:286–298. doi: 10.1093/bib/bbn013. PubMed DOI
Guindon S., Dufayard J.F., Lefort V., Anisimova M., Hordijk W., Gascuel O. New algorithms and methods to estimate maximum-likelihood phylogenies: Assessing the performance of PhyML 3.0. Syst. Biol. 2010;59:307–321. doi: 10.1093/sysbio/syq010. PubMed DOI
Gouy M., Guindon S., Gascuel O. SeaView version 4: A multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 2010;27:221–224. doi: 10.1093/molbev/msp259. PubMed DOI
Anisimova M., Gascuel O. Approximate likelihood-ratio test for branches: A fast, accurate, and powerful alternative. Syst. Biol. 2006;55:539–552. doi: 10.1080/10635150600755453. PubMed DOI
Kubaláková M., Macas J., Doležel J. Mapping of repeated DNA sequences in plant chromosomes by PRINS and C-PRINS. Theor. Appl. Genet. 1997;94:758–763. doi: 10.1007/s001220050475. DOI
Nagaki K., Cheng Z., Ouyang S., Talbert P.B., Kim M., Jones K.M., Henikoff S., Buell C.R., Jiang J. Sequencing of a rice centromere uncovers active genes. Nat. Genet. 2004;36:138–145. doi: 10.1038/ng1289. PubMed DOI