A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
18803819
PubMed Central
PMC2565679
DOI
10.1186/1471-2229-8-95
PII: 1471-2229-8-95
Knihovny.cz E-zdroje
- MeSH
- chromozomy rostlin genetika MeSH
- DNA rostlinná genetika MeSH
- fyzikální mapování chromozomů MeSH
- genetické markery MeSH
- genom rostlinný * MeSH
- genová knihovna MeSH
- hybridizace in situ fluorescenční MeSH
- molekulární sekvence - údaje MeSH
- repetitivní sekvence nukleových kyselin MeSH
- rostlinné geny MeSH
- sekvence nukleotidů MeSH
- sekvenční homologie nukleových kyselin MeSH
- umělé bakteriální chromozomy MeSH
- výpočetní biologie MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA rostlinná MeSH
- genetické markery MeSH
BACKGROUND: Rye (Secale cereale L.) belongs to tribe Triticeae and is an important temperate cereal. It is one of the parents of man-made species Triticale and has been used as a source of agronomically important genes for wheat improvement. The short arm of rye chromosome 1 (1RS), in particular is rich in useful genes, and as it may increase yield, protein content and resistance to biotic and abiotic stress, it has been introgressed into wheat as the 1BL.1RS translocation. A better knowledge of the rye genome could facilitate rye improvement and increase the efficiency of utilizing rye genes in wheat breeding. RESULTS: Here, we report on BAC end sequencing of 1,536 clones from two 1RS-specific BAC libraries. We obtained 2,778 (90.4%) useful sequences with a cumulative length of 2,032,538 bp and an average read length of 732 bp. These sequences represent 0.5% of 1RS arm. The GC content of the sequenced fraction of 1RS is 45.9%, and at least 84% of the 1RS arm consists of repetitive DNA. We identified transposable element junctions in BESs and developed insertion site based polymorphism markers (ISBP). Out of the 64 primer pairs tested, 17 (26.6%) were specific for 1RS. We also identified BESs carrying microsatellites suitable for development of 1RS-specific SSR markers. CONCLUSION: This work demonstrates the utility of chromosome arm-specific BAC libraries for targeted analysis of large Triticeae genomes and provides new sequence data from the rye genome and molecular markers for the short arm of rye chromosome 1.
Zobrazit více v PubMed
Rabinovich SV. Importance of wheat-rye translocations for breeding modern cultivars of Triticum aestivum L. (Reprinted from Wheat: Prospects for global improvement, 1998) Euphytica. 1998;100:323–340. doi: 10.1023/A:1018361819215. DOI
Schlegel R, Korzun V. About the origin of 1RS.1BL wheat-rye chromosome translocations from Germany. Plant Breeding. 1997;116:537–540. doi: 10.1111/j.1439-0523.1997.tb02186.x. DOI
Burnett CJ, Lorenz KJ, Carver BF. Effects of the 1B/1R translocation in wheat on composition and properties of grain and flour. Euphytica. 1995;86:159–166.
Mago R, Miah H, Lawrence GJ, Wellings CR, Spielmeyer W, Bariana HS, McIntosh RA, Pryor AJ, Ellis JG. High-resolution mapping and mutation analysis separate the rust resistance genes Sr31, Lr26 and Yr9 on the short arm of rye chromosome 1. Theoretical and Applied Genetics. 2005;112:41–50. doi: 10.1007/s00122-005-0098-9. PubMed DOI
Voylokov AV, Korzun V, Borner A. Mapping of three self-fertility mutations in rye (Secale cereale L.) using RFLP, isozyme and morphological markers. Theoretical and Applied Genetics. 1998;97:147–153. doi: 10.1007/s001220050879. DOI
Graybosch RA. Uneasy unions: Quality effects of rye chromatin transfers to wheat. Journal of Cereal Science. 2001;33:3–16. doi: 10.1006/jcrs.2000.0336. DOI
Genes, markers and linkage data of rye (Secale cereale L.), 6th updated inventory
Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974;12:257–269. doi: 10.1007/BF00485947. PubMed DOI
Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, et al. A draft sequence of the rice genome (Oryza sativa L. ssp. japonica) Science. 2002;296:92–100. doi: 10.1126/science.1068275. PubMed DOI
Matsumoto T, Wu JZ, Kanamori H, Katayose Y, Fujisawa M, Namiki N, Mizuno H, Yamamoto K, Antonio BA, Baba T, et al. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Yu J, Hu SN, Wang J, Wong GKS, Li SG, Liu B, Deng YJ, Dai L, Zhou Y, Zhang XQ, et al. A draft sequence of the rice genome (Oryza sativa L. ssp indica) Science. 2002;296:79–92. doi: 10.1126/science.1068037. PubMed DOI
Dolezel J, Kubalakova M, Bartos J, Macas J. Flow cytogenetics and plant genome mapping. Chromosome Res. 2004;12:77–91. doi: 10.1023/B:CHRO.0000009293.15189.e5. PubMed DOI
Dolezel J, Kubalakova M, Paux E, Bartos J, Feuillet C. Chromosome-based genomics in the cereals. Chromosome Res. 2007;15:51–66. doi: 10.1007/s10577-006-1106-x. PubMed DOI
Kubalakova M, Valarik M, Bartos J, Vrana J, Cihalikova J, Molnar-Lang M, Dolezel J. Analysis and sorting of rye (Secale cereale L.) chromosomes using flow cytometry. Genome. 2003;46:893–905. doi: 10.1139/g03-054. PubMed DOI
Simkova H, Safar J, Suchankova P, Kovarova P, Bartos J, Kubalakova M, Janda J, Cihalikova J, Mago R, Lelley T, et al. A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS) BMC Genomics. 2008;9:237. doi: 10.1186/1471-2164-9-237. PubMed DOI PMC
Kelley JM, Field CE, Craven MB, Bocskai D, Kim UJ, Rounsley SD, Adams MD. High throughput direct end sequencing of BAC clones. Nucleic Acids Research. 1999;27:1539–1546. doi: 10.1093/nar/27.6.1539. PubMed DOI PMC
Shultz JL, Kazi S, Bashir R, Afzal JA, Lightfoot DA. The development of BAC-end sequence-based microsatellite markers and placement in the physical and genetic maps of soybean. Theoretical and Applied Genetics. 2007;114:1081–1090. doi: 10.1007/s00122-007-0501-9. PubMed DOI
Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P, Feuillet C. Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant Journal. 2006;48:463–474. doi: 10.1111/j.1365-313X.2006.02891.x. PubMed DOI
Safar J, Bartos J, Janda J, Bellec A, Kubalakova M, Valarik M, Pateyron S, Weiserova J, Tuskova R, Cihalikova J, et al. Dissecting large and complex genomes: flow sorting and BAC cloning of individual chromosomes from bread wheat. Plant Journal. 2004;39:960–968. doi: 10.1111/j.1365-313X.2004.02179.x. PubMed DOI
Chou HH, Holmes MH. DNA sequence quality trimming and vector removal. Bioinformatics. 2001;17:1093–1104. doi: 10.1093/bioinformatics/17.12.1093. PubMed DOI
TREP, the Triticeae Repeat Sequence Database
Wicker T, Matthews DE, Keller B. TREP: a database for Triticeae repetitive elements. Trends in Plant Science. 2002;7:561–562. doi: 10.1016/S1360-1385(02)02372-5. DOI
Repbase
Jurka J, Kapitonov VV, Pavlicek A, Klonowski P, Kohany O, Walichiewicz J. Repbase update, a database of eukaryotic repetitive elements. Cytogenetic and Genome Research. 2005;110:462–467. doi: 10.1159/000084979. PubMed DOI
The TIGR Plant Repeat Databases
Ouyang S, Buell CR. The TIGR Plant Repeat Databases: a collective resource for the identification of repetitive sequences in plants. Nucleic Acids Research. 2004;32:D360–D363. doi: 10.1093/nar/gkh099. PubMed DOI PMC
PlantGDB – Resources for Plant Comparative Genomics
Dong Q, Lawrence CJ, Schlueter SD, Wilkerson MD, Kurtz S, Lushbough C, Brendel V. Comparative plant genomics resources at PlantGDB. Plant Physiol. 2005;139:610–618. doi: 10.1104/pp.104.059212. PubMed DOI PMC
RepeatMasker
Altschul SF, Madden TL, Schaffer AA, Zhang JH, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
GenBank
Kofler R, Schlotterer C, Lelley T. SciRoKo: a new tool for whole genome microsatellite search and investigation. Bioinformatics. 2007;23:1683–1685. doi: 10.1093/bioinformatics/btm157. PubMed DOI
Rozen S, Skaletsky HJ. Primer3 on the WWW for general users and for biologist programmers. In: Krawetz S, Misener S, editor. Bioinformatics methods and protocols: Methods in molecular biology. Totowa: Humana Press; 2000. pp. 365–386. PubMed
Masoudi-Nejad A, Nasuda S, McIntosh RA, Endo TR. Transfer of rye chromosome segments to wheat by a gametocidal system. Chromosome Research. 2002;10:349–357. doi: 10.1023/A:1016845200960. PubMed DOI
Kubalakova M, Kovarova P, Suchankova P, Cihalikova J, Bartos J, Lucretti S, Watanabe N, Kianian SF, Dolezel J. Chromosome sorting in tetraploid wheat and its potential for genome analysis. Genetics. 2005;170:823–829. doi: 10.1534/genetics.104.039180. PubMed DOI PMC
Li WL, Zhang P, Fellers JP, Friebe B, Gill BS. Sequence composition, organization, and evolution of the core Triticeae genome. Plant Journal. 2004;40:500–511. doi: 10.1111/j.1365-313X.2004.02228.x. PubMed DOI
Haberer G, Young S, Bharti AK, Gundlach H, Raymond C, Fuks G, Butler E, Wing RA, Rounsley S, Birren B, et al. Structure and architecture of the maize genome. Plant Physiology. 2005;139:1612–1624. doi: 10.1104/pp.105.068718. PubMed DOI PMC
The Arabidopsis Information Resource
TIGR Rice Genome Annotation
Korzun V, Malyshev S, Voylokov AV, Borner A. A genetic map of rye (Secale cereale L.) combining RFLP, isozyme, protein, microsatellite and gene loci. Theoretical and Applied Genetics. 2001;102:709–717. doi: 10.1007/s001220051701. DOI
Bednarek PT, Masojc P, Lewandowska R, Myskow B. Saturating rye genetic map with amplified fragment length polymorphism (AFLP) and random amplified polymorphic DNA (RAPD) markers. J Appl Genet. 2003;44:21–33. PubMed
Khlestkina EK, Ma HMT, Pestsova EG, Roder MS, Malyshev SV, Korzun V, Borner A. Mapping of 99 new microsatellite-derived loci in rye (Secale cereale L.) including 39 expressed sequence tags. Theoretical and Applied Genetics. 2004;109:725–732. doi: 10.1007/s00122-004-1659-z. PubMed DOI
Kuleung C, Baenziger PS, Dweikat I. Transferability of SSR markers among wheat, rye, and triticale. Theoretical and Applied Genetics. 2004;108:1147–1150. doi: 10.1007/s00122-003-1532-5. PubMed DOI
Varshney RK, Sigmund R, Borner A, Korzun V, Stein N, Sorrells ME, Langridge P, Graner A. Interspecific transferability and comparative mapping of barley EST-SSR markers in wheat, rye and rice. Plant Science. 2005;168:195–202. doi: 10.1016/j.plantsci.2004.08.001. DOI
Zhang LY, Bernard M, Leroy P, Feuillet C, Sourdille P. High transferability of bread wheat EST-derived SSRs to other cereals. Theoretical and Applied Genetics. 2005;111:677–687. doi: 10.1007/s00122-005-2041-5. PubMed DOI
Varshney RK, Beier U, Khlestkina EK, Kota R, Korzun V, Graner A, Borner A. Single nucleotide polymorphisms in rye (Secale cereale L.): discovery, frequency, and applications for genome mapping and diversity studies. Theoretical and Applied Genetics. 2007;114:1105–1116. doi: 10.1007/s00122-007-0504-6. PubMed DOI
Kofler R, Bartos J, Gong L, Stift G, Suchankova P, Simkova H, Berenyi M, Burg K, Dolezel J, Lelley T. Development of microsatellite markers specific for the short arm of rye (Secale cereale L.) chromosome 1. Theor Appl Genet. 2008;117:915–926. doi: 10.1007/s00122-008-0831-2. PubMed DOI
Liu B, Wendel JF. Retrotransposon activation followed by rapid repression in introgressed rice plants. Genome. 2000;43:874–880. doi: 10.1139/gen-43-5-874. PubMed DOI
Shan XH, Liu ZL, Dong ZY, Wang YM, Chen Y, Lin XY, Long LK, Han FP, Dong YS, Liu B. Mobilization of the active MITE transposons mPing and Pong in rice by introgression from wild rice (Zizania latifolia Griseb.) Molecular Biology and Evolution. 2005;22:976–990. doi: 10.1093/molbev/msi082. PubMed DOI
Chenna R, Sugawara H, Koike T, Lopez R, Gibson TJ, Higgins DG, Thompson JD. Multiple sequence alignment with the Clustal series of programs. Nucleic Acids Research. 2003;31:3497–3500. doi: 10.1093/nar/gkg500. PubMed DOI PMC
Dolezel J, Greilhuber J, Lucretti S, Meister A, Lysak MA, Nardi L, Obermayer R. Plant genome size estimation by flow cytometry: Inter-laboratory comparison. Annals of Botany. 1998;82:17–26. doi: 10.1006/anbo.1998.0730. DOI
Bennett MD, Smith JB. Nuclear DNA amounts in angiosperms. Philos Trans R Soc Lond B Biol Sci. 1976;274:227–274. doi: 10.1098/rstb.1976.0044. PubMed DOI
Greilhuber J, Dolezel J, Lysak MA, Bennett MD. The origin, evolution and proposed stabilization of the terms "genome size' and 'C-value' to describe nuclear DNA contents. Annals of Botany. 2005;95:255–260. doi: 10.1093/aob/mci019. PubMed DOI PMC
Isolation and Sequencing of Chromosome Arm 7RS of Rye, Secale cereale
The B chromosome of Sorghum purpureosericeum reveals the first pieces of its sequence
Sequencing of 15 622 gene-bearing BACs clarifies the gene-dense regions of the barley genome
Chromosomes in the flow to simplify genome analysis
Repetitive part of the banana (Musa acuminata) genome investigated by low-depth 454 sequencing