The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
27146967
PubMed Central
PMC4857426
DOI
10.1186/s12864-016-2667-5
PII: 10.1186/s12864-016-2667-5
Knihovny.cz E-zdroje
- Klíčová slova
- 1RS BAC library, 454 sequences, DNA motifs, Rye, Secale cereale, Subtelomeric heterochromatin, TE–tandem junctions, Tandem repeats, Transposable elements,
- MeSH
- amplifikace genu * MeSH
- chromozomy rostlin genetika MeSH
- fylogeneze MeSH
- genová knihovna MeSH
- heterochromatin genetika MeSH
- hybridizace in situ fluorescenční MeSH
- komponenty genomu MeSH
- sekvenční analýza DNA MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- tandemové repetitivní sekvence * MeSH
- transpozibilní elementy DNA * MeSH
- umělé bakteriální chromozomy MeSH
- žito genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- heterochromatin MeSH
- transpozibilní elementy DNA * MeSH
BACKGROUND: A prominent and distinctive feature of the rye (Secale cereale) chromosomes is the presence of massive blocks of subtelomeric heterochromatin, the size of which is correlated with the copy number of tandem arrays. The rapidity with which these regions have formed over the period of speciation remains unexplained. RESULTS: Using a BAC library created from the short arm telosome of rye chromosome 1R we uncovered numerous arrays of the pSc200 and pSc250 tandem repeat families which are concentrated in subtelomeric heterochromatin and identified the adjacent DNA sequences. The arrays show significant heterogeneity in monomer organization. 454 reads were used to gain a representation of the expansion of these tandem repeats across the whole rye genome. The presence of multiple, relatively short monomer arrays, coupled with the mainly star-like topology of the monomer phylogenetic trees, was taken as indicative of a rapid expansion of the pSc200 and pSc250 arrays. The evolution of subtelomeric heterochromatin appears to have included a significant contribution of illegitimate recombination. The composition of transposable elements (TEs) within the regions flanking the pSc200 and pSc250 arrays differed markedly from that in the genome a whole. Solo-LTRs were strongly enriched, suggestive of a history of active ectopic exchange. Several DNA motifs were over-represented within the LTR sequences. CONCLUSION: The large blocks of subtelomeric heterochromatin have arisen from the combined activity of TEs and the expansion of the tandem repeats. The expansion was likely based on a highly complex network of recombination mechanisms.
Institute of Cytology and Genetics Siberian Branch of the RAS Novosibirsk Russia
Institute of Molecular and Cellular Biology Siberian Branch of the RAS Novosibirsk Russia
Zobrazit více v PubMed
Bennett MD, Leitch IJ. Angiosperm DNA C-values database (release 8.0, Dec 2012). http://www.kew.org/cvalues/.
Rabinowicz PD, Bennetzen JL. The maize genome as a model for efficient sequence analysis of large plant genomes. Curr Opin Plant Biol. 2006;9:149–56. doi: 10.1016/j.pbi.2006.01.015. PubMed DOI
Gill BS, Kimber G. The Giemsa C-banded karyotype of rye. Proc Natl Acad Sci USA. 1974a;71:1247–9. PubMed PMC
Gill BS, Kimber G. Giemsa C-banding and the evolution of wheat. Proc Natl Acad Sci USA. 1974b;71:4086–4090. PubMed PMC
Linde-Laursen I. Giemsa C-banding of barley chromosomes. I. Banding pattern polymorphism. Hereditas. 1978;88:55–64. doi: 10.1111/j.1601-5223.1978.tb01603.x. DOI
Bennett MD, Gustafson JP, Smith JB. Variation in nuclear DNA in the genus Secale. Chromosoma. 1977;62:149–76. doi: 10.1007/BF00327398. DOI
Flavell RB, Bennett MD, Smith JB, Smith DB. Genome size and the proportion of repeated nucleotide sequence DNA in plants. Biochem Genet. 1974;12:257–69. doi: 10.1007/BF00485947. PubMed DOI
Charlesworth B, Sniegowski P, Stephan W. The evolutionary dynamics of repetitive DNA in eukaryotes. Nature. 1994;371:215–20. doi: 10.1038/371215a0. PubMed DOI
Melters DP, Bradnam KR, Young HA, Telis N, May MR, Ruby JG, et al. Comparative analysis of tandem repeats from hundreds of species reveals unique insights into centromere evolution. Genome Biol. 2013;14:R10. doi: 10.1186/gb-2013-14-1-r10. PubMed DOI PMC
Jones JDG, Flavell RB. The structure, amount and chromosomal localisation of defined repeated DNA sequences in species of the genus Secale. Chromosoma. 1982;86:613–41. doi: 10.1007/BF00285607. DOI
McIntyre CL, Pereira S, Moran LB, Appels R. New Secale cereale (rye) DNA derivatives for the detection of rye chromosome segments in wheat. Genome. 1990;33:317–23. doi: 10.1139/g90-094. PubMed DOI
Vershinin AV, Schwarzacher T, Heslop-Harrison JS. The large-scale organization of repetitive DNA families at the telomeres of rye chromosomes. Plant Cell. 1995;7:1823–33. PubMed PMC
Alkhimova OG, Mazurok NA, Potapova TA, Zakian SM, Heslop-Harrison JS, Vershinin AV. Diverse patterns of the tandem repeats organization in rye chromosomes. Chromosoma. 2004;113:42–52. doi: 10.1007/s00412-004-0294-4. PubMed DOI
Vershinin AV, Alkhimova EG, Heslop-Harrison JS. Molecular diversification of tandemly organized DNA sequences and heterochromatic chromosome regions in some Triticeae species. Chromosome Res. 1996;4:517–25. doi: 10.1007/BF02261779. PubMed DOI
Kishii M, Tsujimoto H. Genus-specific localization of the TaiI family of tandem-repetitive sequences in either the centromeric or subtelomeric regions in Triticeae species (Poaceae) and its evolution in wheat. Genome. 2002;45:946–55. doi: 10.1139/g02-059. PubMed DOI
Vershinin AV, Evtushenko EV. What is the specificity of plant subtelomeres? In: Louis EJ, Becker MM, editors. Subtelomeres. Heidelberg-New York-Dordrecht-London: Springer; 2014. pp. 195–209.
El-Metwally S, Hamza T, Zakaria M, Helmy M. Next-generation sequence assembly: four stages of data processing and computational challenges. PLoS Comput Biol. 2013;9:e1003345. doi: 10.1371/journal.pcbi.1003345. PubMed DOI PMC
Šimková H, Šafář J, Suchánková P, Kovářová P, Bartoš J, Kubaláková M, et al. A novel resource for genomics of Triticeae: BAC library specific for the short arm of rye (Secale cereale L.) chromosome 1R (1RS) BMC Genomics. 2008;9:237. doi: 10.1186/1471-2164-9-237. PubMed DOI PMC
Bartoš J, Paux E, Kofler R, Havránková M, Kopecký D, Suchálková P, et al. A first survey of the rye (Secale cereale) genome composition through BAC end sequencing of the short arm of chromosome 1R. BMC Plant Biol. 2008;8:95. doi: 10.1186/1471-2229-8-95. PubMed DOI PMC
Fluch S, Kopecky D, Burg K, Šimková H, Taudien S, Petzold A, et al. Sequence composition and gene content of the short arm of rye (Secale cereale) chromosome 1. PLoS One. 2012;7:e30784. doi: 10.1371/journal.pone.0030784. PubMed DOI PMC
Martis MM, Zhou R, Haseneyer G, Schmutzer T, Vrána J, Kubaláková M, et al. Reticulate evolution of the rye genome. Plant Cell. 2013;25:3685–98. doi: 10.1105/tpc.113.114553. PubMed DOI PMC
Rudd MK, Willard HF. Analysis of the centromeric regions of the human genome assembly. Trends Genet. 2004;20:529–33. doi: 10.1016/j.tig.2004.08.008. PubMed DOI
Warburton PE, Hasson D, Guillem F, Lescale C, Jin X, Abrusan G. Analysis of the largest tandemly repeated DNA families in the human genome. BMC Genomics. 2008;9:533. doi: 10.1186/1471-2164-9-533. PubMed DOI PMC
Henikoff S. Unidirectional digestion with exonuclease III creates targeted breakpoints for DNA sequencing. Gene. 1984;28:351–9. doi: 10.1016/0378-1119(84)90153-7. PubMed DOI
Vicient CM, Kalendar R, Schulman AH. Variability, recombination, and mosaic evolution of the barley BARE-1 retrotransposon. J Mol Evol. 2005;61:275–91. doi: 10.1007/s00239-004-0168-7. PubMed DOI
Tek AL, Song J, Macas J, Jiang J. Sobo, a recently amplified satellite repeat of potato, and its implications for the origin of tandemly repeated sequences. Genetics. 2005;170:1231–8. doi: 10.1534/genetics.105.041087. PubMed DOI PMC
Sharma A, Wolfgruber TK, Presting GG. Tandem repeats derived from centromeric retrotransposons. BMC Genomics. 2013;14:142. doi: 10.1186/1471-2164-14-142. PubMed DOI PMC
Wicker T, Guyot R, Yahiaoui N, Keller B. CACTA transposons in Triticeae. A diverse family of high-copy repetitive elements. Plant Physiol. 2003;132:52–63. doi: 10.1104/pp.102.015743. PubMed DOI PMC
Middleton CP, Stein N, Keller B, Kilian B, Wicker T. Comparative analysis of genome composition in Triticeae reveals strong variation in transposable element dynamics and nucleotide diversity. Plant J. 2013;73:347–56. doi: 10.1111/tpj.12048. PubMed DOI
Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P, Chalhoub B, et al. A unified classification system for eukaryotic transposable elements. Nature Rev Genet. 2007;8:973–82. doi: 10.1038/nrg2165. PubMed DOI
Choo KH, Earle E, Vissel B, Filby RG. Identification of two distinct subfamilies of alpha satellite DNA that are highly specific for human chromosome 15. Genomics. 1990;7:143–51. doi: 10.1016/0888-7543(90)90534-2. PubMed DOI
Wevrick R, Willard HF. Physical map of the centromeric region of human chromosome 7: relationship between two distinct alpha satellite arrays. Nucl Acids Res. 1991;19:2295–301. doi: 10.1093/nar/19.9.2295. PubMed DOI PMC
Rudd MK, Wray GA, Willard HF. The evolutionary dynamics of α-satellite. Genome Res. 2006;16:88–96. doi: 10.1101/gr.3810906. PubMed DOI PMC
Ames D, Murphy N, Helentjaris T, Sun N, Chandler V. Comparative analyses of human single- and multilocus tandem repeats. Genetics. 2008;7:603–13. PubMed PMC
Alkan C, Ventura M, Archidiacono N, Rocchi M, Sahinalp SC, Eichler EE. Organization and evolution of primate centromeric DNA from whole-genome shotgun sequence data. PLoS Comput Biol. 2007;3:e181. doi: 10.1371/journal.pcbi.0030181. PubMed DOI PMC
Goodman M. The genomic record of Humankind’s evolutionary roots. Am J Hum Genet. 1999;64:31–9. doi: 10.1086/302218. PubMed DOI PMC
Smith GP. Evolution of repeated DNA sequences by unequal crossover. Science. 1976;191:528–35. doi: 10.1126/science.1251186. PubMed DOI
Willard HF. Evolution of alpha satellite. Curr Opin Genet&Dev. 1991;1:509–14. doi: 10.1016/S0959-437X(05)80200-X. PubMed DOI
Xin Z-Y, Appels R. Occurrence of rye (Secale cereale) 350-family DNA sequences in Agropyron and other Triticeae. Pl Syst Evol. 1987;160:65–76. doi: 10.1007/BF00936710. DOI
Gaut BS. Evolutionary dynamics of grass genomes. New Phytol. 2002;154:15–28. doi: 10.1046/j.1469-8137.2002.00352.x. DOI
Cuadrado A, Jouve N. Distribution of highly repeated DNA sequences in species of the genus Secale. Genome. 1997;40:309–17. doi: 10.1139/g97-043. PubMed DOI
Heemert CV, Sybenga J. Identification of the three chromosomes involved in the translocation which structurally differentiates the genome of Secalecereale L., from those of Secale montanum and Secale vavilovii Grossh. Genetica. 1972;43:387–93. doi: 10.1007/BF00156134. DOI
Koukalova B, Moraes AP, Renny-Byfield S, Matyasek R, Leitch AR, Kovarik A. Fall and rise of satellite repeats in allopolyploids of Nicotiana over c.5 million years. New Phytol. 2010;186:148–60. doi: 10.1111/j.1469-8137.2009.03101.x. PubMed DOI
Charles M, Belcram H, Just J, Huneau C, Viollet A, Couloux A, et al. Dynamics and differential proliferation of transposable elements during the evolution of the B and A genomes of wheat. Genetics. 2008;180:1071–86. doi: 10.1534/genetics.108.092304. PubMed DOI PMC
Daron J, Glover N, Pingault L, Theil S, Jamilloux V, Paux E, et al. Organization and evolution of transposable elements along the bread wheat chromosome 3B. Genome Biol. 2014;15:546. doi: 10.1186/s13059-014-0546-4. PubMed DOI PMC
Shirasu K, Schulman A, Lahaye T, Schulze-Lefert P. A contiguous 66-kb barley DNA sequence provides evidence for reversible genome expansion. Genome Res. 2000;10:908–15. doi: 10.1101/gr.10.7.908. PubMed DOI PMC
Wicker T, Zimmermann W, Perovic D, Paterson AH, Ganal M, Graner A, et al. A detailed look at 7 million years of genome evolution in a 439 kb contiguous sequence at the barley Hv-elF4E locus: recombination, rearrangements and repeats. Plant J. 2005;41:184–94. PubMed
Klemme S, Banaei-Moghaddam AM, Macas J, Wicker T, Novak P, Houben A. High-copy sequences reveal distinct evolution of the rye B chromosome. New Phytol. 2013;199:550–8. doi: 10.1111/nph.12289. PubMed DOI
Peterson-Burch BD, Nettleton D, Voytas DF. Genomic neighbourhoods for Arabidopsis retrotransposons: a role for targeted integration in the distribution of the Metaviridae. Genome Biol. 2004;5:R78. doi: 10.1186/gb-2004-5-10-r78. PubMed DOI PMC
Horvath JE, Viggiano L, Loftus BJ, Adams MD, Archidiacono N, Rocchi M, et al. Molecular structure and evolution of an alpha satellite/non-alpha satellite junction at 16p11. Hum Mol Genet. 2000;9:113–23. PubMed
Symington LS, Gautier J. Double-strand break end resection and repair pathway choice. Ann Rev Genet. 2011;45:247–71. doi: 10.1146/annurev-genet-110410-132435. PubMed DOI
Myers S, Freeman C, Auton A, Donnelly P, McVean G. A common sequence motif associated with recombination hot spots and genome instability in humans. Nat Genet. 2008;40:1124–9. doi: 10.1038/ng.213. PubMed DOI
Choi K, Henderson IR. Meiotic recombination hotspots – a comparative view. Plant J. 2015;83:52–61. doi: 10.1111/tpj.12870. PubMed DOI
Ottaviani D, LeCain M, Sheer D. The role of microhomology in genomic structural variation. Trends Genet. 2014;30:85–94. doi: 10.1016/j.tig.2014.01.001. PubMed DOI
Qi Z, Redding S, Lee JY, Gibb B, Kwon YH, Niu H, et al. DNA sequence alignment by microhomology sampling during homologous recombination. Cell. 2015;160:856–69. doi: 10.1016/j.cell.2015.01.029. PubMed DOI PMC
Hastings PJ, Ira G, Lupski JR. A microhomology-mediated break-induced replication model for the origin of human copy number variation. PLoS Genet. 2009;5:e1000327. doi: 10.1371/journal.pgen.1000327. PubMed DOI PMC
Kellogg EA. Evolutionary history of the grasses. Plant Physiol. 2001;125:1198–205. doi: 10.1104/pp.125.3.1198. PubMed DOI PMC
Gill BS, Friebe B. Cytogenetic analysis of wheat and rye genomes. In: Feuillet C, Muehlbauer GJ, editors. Genetics and genomics of the Triticeae, plant genetics and genomics: crops and models 7. LLC.: Springer Science + Business Media; 2009. pp. 121–35.
Belostotsky DA, Ananiev EV. Characterization of relic DNA from barley genome. Theor Appl Genet. 1990;80:374–80. doi: 10.1007/BF00210075. PubMed DOI
Vershinin AV, Svitashev S, Gummesson P-O, Salomon B, von Bothmer R, Bryngelsson T. Characterization of a family of tandemly repeated DNA sequences in Triticeae. Theor Appl Genet. 1994;89:217–25. doi: 10.1007/BF00225145. PubMed DOI
Lukaszewski AJ, Rybka K, Korzun V, Malyshev SV, Lapinski B, Whitkus R. Genetic and physical mapping of homoeologous recombination points involving wheat chromosome 2B and rye chromosome 2R. Genome. 2004;47:36–45. doi: 10.1139/g03-089. PubMed DOI
Dvorak J. Triticeae genome structure and evolution. In: Feuillet C, Muchlbauer GJ, editors. Genetics and genomics of the triticeae. Plant genetics and genomics: crops and models 7. LLC.: Springer Science + Business Media; 2009. pp. 685–711.
Luo MC, Deal KR, Young ZL, Dvorak J. Comparative genetic maps reveal extreme crossover localization in the Aegilops speltoides chromosomes. Theor Appl Genet. 2005;111:1098–106. doi: 10.1007/s00122-005-0035-y. PubMed DOI
Gonzalez-Garcia M, Gonzalez-Sanchez M, Puertas MJ. The high variability of subtelomeric heterochromatin and connections between nonhomologous chromosomes, suggest frequent ectopic recombination in rye meiocytes. Cytogenet Genome Res. 2006;115:179–85. doi: 10.1159/000095240. PubMed DOI
Driscoll CS, Sears ER. Individual addition of the chromosomes of Imperial rye to wheat. Agron Abstr. 1971: 6.
Schwarzacher T, Heslop-Harrison JS. Practical in situ Hybridization. Oxford: BIOS; 2000.
Cheung WY, Gale MD. The isolation of high molecular weight DNA from wheat, barley and rye for analysis by pulse-field gel electrophoresis. Plant Mol Biol. 1990;14:881–8. doi: 10.1007/BF00016525. PubMed DOI
Church GM, Gilbert W. Genomic sequencing. Proc Natl Acad Sci U S A. 1984;81:1991–5. doi: 10.1073/pnas.81.7.1991. PubMed DOI PMC
Song J, Dong F, Lilly JW, Stupar RM, Jiang J. Instability of bacterial artificial chromosome (BAC) clones containing tandemly repeated DNA sequences. Genome. 2001;44:463–9. doi: 10.1139/g01-029. PubMed DOI
Sambrook J, Fritsch EF, Maniatis T. Molecular cloning: a laboratory manual. 2. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1989.
Schmieder R, Lim YW, Rohwer F, Edwards R. TagCleaner: identification and removal of tag sequences from genomic and metagenomic datasets. BMC Bioinformatics. 2010;11:341. doi: 10.1186/1471-2105-11-341. PubMed DOI PMC
Ewing B, Green P. Base-calling of automated sequencer traces using phred. II. Error probabilities. Genome Res. 1998;8:186–94. doi: 10.1101/gr.8.3.186. PubMed DOI
Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, et al. BLAST+: architecture and applications. BMC Bioinformatics. 2009;10:421. PubMed PMC
Kurtz S, Phillippy A, Delcher AL, Smoot M, Shumway M, Antonescu C, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. PubMed PMC
Liu K, Warnow TJ, Holder MT, Nelesen SM, Yu J, Stamatakis AP, et al. SATe-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Syst Biol. 2012;61:90–106. PubMed
Freudenstein JV, Davis JI. Branch support via resampling: an empirical study. Cladistics. 2010;26:643–56. doi: 10.1111/j.1096-0031.2010.00304.x. PubMed DOI
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688–90. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Huson DH, Scornavacca C. Dendroscope 3: an interactive tool for rooted phylogenetic trees and networks. Syst Biol. 2012;61:1061–7. doi: 10.1093/sysbio/sys062. PubMed DOI
Rice P, Longden I, Bleasby A. EMBOSS: the European molecular biology open software suite. Trends Genet. 2000;16:276–7. doi: 10.1016/S0168-9525(00)02024-2. PubMed DOI
Pearson WR, Lipman DJ. Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A. 1988;85:2444–8. doi: 10.1073/pnas.85.8.2444. PubMed DOI PMC
Levitsky VG, Ignatieva EV, Ananko EA, Turnaev II, Merkulova TI, Kolchanov NA, et al. Effective transcription factor binding site prediction using a combination of optimization, a genetic algorithm and discriminant analysis to capture distant interactions. BMC Bioinformatics. 2007;8:481. PubMed PMC
Touzet H, Varre J-S. Efficient and accurate P-value computation for Position Weight Matrices. Algorithms Mol Biol. 2007;2:15. doi: 10.1186/1748-7188-2-15. PubMed DOI PMC
Sokal RR, Rohlf FJ. Biometry: the principles and practice of statistics in biological research. New York: W.H.Freeman and Co.; 2012.