Subtelomeric assembly of a multi-gene pathway for antimicrobial defense compounds in cereals
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
BB/L014130/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/000PR9790
Biotechnology and Biological Sciences Research Council - United Kingdom
U01 GM110699
NIGMS NIH HHS - United States
BB/H009582/1
Biotechnology and Biological Sciences Research Council - United Kingdom
BBS/E/J/00000614
Biotechnology and Biological Sciences Research Council - United Kingdom
BB/K005952/1
Biotechnology and Biological Sciences Research Council - United Kingdom
PubMed
33963185
PubMed Central
PMC8105312
DOI
10.1038/s41467-021-22920-8
PII: 10.1038/s41467-021-22920-8
Knihovny.cz E-zdroje
- MeSH
- hybridizace in situ fluorescenční MeSH
- jedlá semena genetika MeSH
- metabolické sítě a dráhy genetika MeSH
- molekulární evoluce MeSH
- multigenová rodina MeSH
- odolnost vůči nemocem genetika MeSH
- oves genetika metabolismus MeSH
- repetitivní sekvence nukleových kyselin MeSH
- saponiny biosyntéza chemie genetika MeSH
- sekvenování celého genomu MeSH
- sekvenování transkriptomu MeSH
- syntenie genetika MeSH
- tabák metabolismus MeSH
- telomery genetika MeSH
- vysoce účinné nukleotidové sekvenování MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- avenacin A 1 MeSH Prohlížeč
- saponiny MeSH
Non-random gene organization in eukaryotes plays a significant role in genome evolution. Here, we investigate the origin of a biosynthetic gene cluster for production of defence compounds in oat-the avenacin cluster. We elucidate the structure and organisation of this 12-gene cluster, characterise the last two missing pathway steps, and reconstitute the entire pathway in tobacco by transient expression. We show that the cluster has formed de novo since the divergence of oats in a subtelomeric region of the genome that lacks homology with other grasses, and that gene order is approximately colinear with the biosynthetic pathway. We speculate that the positioning of the late pathway genes furthest away from the telomere may mitigate against a 'self-poisoning' scenario in which toxic intermediates accumulate as a result of telomeric gene deletions. Our investigations reveal a striking example of adaptive evolution underpinned by remarkable genome plasticity.
Earlham Institute Norwich Research Park Norwich UK
Zobrazit více v PubMed
Turner EM. The nature of resistance of oats to the take-all fungus. III. Distribution of the inhibitor in oat seedlings. J. Exp. Bot. 1960;11:403–412. doi: 10.1093/jxb/11.3.403. DOI
Papadopoulou K, et al. Compromised disease resistance in saponin-deficient plants. Proc. Natl Acad. Sci. USA. 1999;96:12923–12928. doi: 10.1073/pnas.96.22.12923. PubMed DOI PMC
Qi X, et al. A gene cluster for secondary metabolism in oat: Implications for the evolution of metabolic diversity in plants. Proc. Natl Acad. Sci. USA. 2004;101:8233–8238. doi: 10.1073/pnas.0401301101. PubMed DOI PMC
Qi X, et al. A different function for a member of an ancient and highly conserved cytochrome P45- family: From essential sterols to plant defense. Proc. Natl Acad. Sci. USA. 2006;103:18848–18853. doi: 10.1073/pnas.0607849103. PubMed DOI PMC
Mugford ST, et al. A serine carboxypeptidase-like acyltransferase is required for synthesis of antimicrobial compounds and disease resistance in oats. Plant Cell. 2009;21:2473–2484. doi: 10.1105/tpc.109.065870. PubMed DOI PMC
Mugford ST, et al. Modularity of plant metabolic gene clusters: A trio of linked genes that are collectively required for acylation of triterpenes in oat. Plant Cell. 2013;25:1078–1092. doi: 10.1105/tpc.113.110551. PubMed DOI PMC
Louveau T, et al. Analysis of two new arabinosyltransferases belonging to the Carbohydrate-Active Enzyme (CAZY) glycosyl transferase family 1 provides insights into disease resistance and sugar donor specificity. Plant Cell. 2018;30:3038–3057. doi: 10.1105/tpc.18.00641. PubMed DOI PMC
Leveau A, et al. Towards take-all control: A C-21 β-oxidase required for acylation of triterpene defense compounds in oat. New Phytol. 2019;221:1544–1555. doi: 10.1111/nph.15456. PubMed DOI PMC
Orme A, et al. A non-canonical vacuolar sugar transferase required for biosynthesis of antimicrobial defense compounds in oat. Proc. Natl Acad. Sci. USA. 2019;116:27105–27114. doi: 10.1073/pnas.1914652116. PubMed DOI PMC
Owatworakit A, et al. Glycosyltransferases from oat (Avena) implicated in the acylation of avenacins. J. Biol. Chem. 2013;288:3696–3704. doi: 10.1074/jbc.M112.426155. PubMed DOI PMC
Mylona P, et al. Sad3 and Sad4 are required for saponin biosynthesis and root development in oat. Plant Cell. 2008;20:201–212. doi: 10.1105/tpc.107.056531. PubMed DOI PMC
Nützmann H-W, Huang A, Osbourn A. Plant metabolic gene clusters – from genetics to genomics. New Phytol. 2016;211:771–789. doi: 10.1111/nph.13981. PubMed DOI PMC
Yan H, et al. Genome size variation in the genus Avena. Genome. 2016;59:209–220. doi: 10.1139/gen-2015-0132. PubMed DOI
Latta RG, et al. Comparative linkage mapping of diploid, tetraploid, and hexaploid Avena species suggests extensive chromosome rearrangement in ancestral blocks. Sci. Rep. 2019;9:12298. doi: 10.1038/s41598-019-48639-7. PubMed DOI PMC
Haas BJ, et al. Automated eukaryotic gene structure annotation using EVidenceModeler and the Program to Assemble Spliced Alignments. Genome Biol. 2008;9:R7. doi: 10.1186/gb-2008-9-1-r7. PubMed DOI PMC
Simão FA, et al. BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Ou S, Chen J, Jiang N. Assessing genome assembly quality using the LTR Assembly Index (LAI) Nucleic Acids Res. 2018;46:e126. PubMed PMC
Ling HQ, et al. Genome sequence of the progenitor of wheat A subgenome Triticum urartu. Nature. 2018;557:424–428. doi: 10.1038/s41586-018-0108-0. PubMed DOI PMC
Luo MC, et al. Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature. 2017;551:498–502. doi: 10.1038/nature24486. PubMed DOI PMC
Haralampidis K, et al. A new class of oxidosqualene cyclases directs synthesis of antimicrobial phytoprotectants in monocots. Proc. Natl Acad. Sci. USA. 2001;98:13431–13436. doi: 10.1073/pnas.231324698. PubMed DOI PMC
Geisler K, et al. Biochemical analysis of a multifunctional cytochrome P450 (CYP51) enzyme required for synthesis of antimicrobial triterpenes in plants. Proc. Natl Acad. Sci. USA. 2013;110:E3360–E3367. doi: 10.1073/pnas.1309157110. PubMed DOI PMC
De Jong JH, Fransz P, Zabel P. High resolution FISH in plants – techniques and applications. Trends Plant Sci. 1999;4:258–263. doi: 10.1016/S1360-1385(99)01436-3. PubMed DOI
Cheng ZK, Buell CR, Wing RA, Jiang JM. Resolution of fluorescence in-situ hybridization mapping on rice mitotic prometaphase chromosomes, meiotic pachytene chromosomes and extended DNA fibers. Chromosome Res. 2002;10:379–387. doi: 10.1023/A:1016849618707. PubMed DOI
International Brachypodium Initiative. Genome sequencing and analysis of the model grass Brachypodium distachyon. Nature. 2010;463:763–768. doi: 10.1038/nature08747. PubMed DOI
International Rice Genome Sequencing Project. The map-based sequence of the rice genome. Nature. 2005;436:793–800. doi: 10.1038/nature03895. PubMed DOI
Mascher M, et al. A chromosome conformation capture ordered sequence of the barley genome. Nature. 2017;544:427–433. doi: 10.1038/nature22043. PubMed DOI
International Wheat Genome Sequencing Consortium (IWGSC) Shifting the limits in wheat research and breeding using a fully annotated reference genome. Science. 2018;361:eaar7191. doi: 10.1126/science.aar7191. PubMed DOI
Avni R, et al. Wild emmer genome architecture and diversity elucidate wheat evolution and domestication. Science. 2017;357:93–97. doi: 10.1126/science.aan0032. PubMed DOI
Maccaferri M, et al. Durum wheat genome highlights past domestication signatures and future improvement targets. Nat. Genet. 2019;51:885–895. doi: 10.1038/s41588-019-0381-3. PubMed DOI
Kautsar SA, Suarez Duran HG, Blin K, Osbourn A, Medema MH. plantiSMASH: automated identification, annotation and expression analysis of plant biosynthetic gene clusters. Nucleic Acids Res. 2017;45(W1):W55–W63. doi: 10.1093/nar/gkx305. PubMed DOI PMC
Maughan PJ, et al. Genomic insights form the first chromosome-scale assemblies of oat (Avena spp.) diploid species. BMC Biol. 2019;17:92. doi: 10.1186/s12915-019-0712-y. PubMed DOI PMC
Nisius A. The stromacentre in Avena plastids: an aggregation of β-glucosidase responsible for the activation of oat-leaf saponins. Planta. 1988;173:474–481. doi: 10.1007/BF00958960. PubMed DOI
David P, et al. A nomadic subtelomeric disease resistance gene cluster in common bean. Plant Physiol. 2020;151:1048–1065. doi: 10.1104/pp.109.142109. PubMed DOI PMC
Aguilar, M. & Prieto, P. Sequence analysis of wheat subtelomeres reveals a high polymorphism among homeologous chromosomes. Plant Genome. 2020;e20065. PubMed
Fan C, et al. The subtelomere of Oryza sativa chromosome 3 short arm as a hot bed of new gene origination in rice. Mol. Plant. 2008;1:839–850. doi: 10.1093/mp/ssn050. PubMed DOI PMC
Evtushenko EV, et al. The expansion of heterochromatin blocks in rye reflects the co-amplification of tandem repeats and adjacent transposable elements. BMC Genom. 2016;17:337. doi: 10.1186/s12864-016-2667-5. PubMed DOI PMC
Mason JMO, McEachern MJ. Chromosome ends as adaptive beginnings: the potential role of dysfunctional telomeres in subtelomeric evolvability. Curr. Genet. 2018;64:997–1000. doi: 10.1007/s00294-018-0822-z. PubMed DOI
Dvorackova M, Fojtova M, Fajkus J. Chromatin dynamics of plant telomeres and ribosomal genes. Plant J. 2015;83:18–37. doi: 10.1111/tpj.12822. PubMed DOI
De Las Peñas A, et al. Virulence-related surface glycoproteins in the yeast pathogen Candida glabrata are encoded in subtelomeric clusters and subject to RAP1- and SIR-dependent transcriptional silencing. Genes Dev. 2003;17:2245–2258. doi: 10.1101/gad.1121003. PubMed DOI PMC
Wegel E, Koumproglou R, Shaw P, Osbourn A. Cell type-specific chromatin decondensation of a metabolic gene cluster in oats. Plant Cell. 2009;21:3926–3926. doi: 10.1105/tpc.109.072124. PubMed DOI PMC
Nützmann H-W, Osbourn A. Regulation of metabolic gene clusters in Arabidopsis thaliana. N. Phytologist. 2015;205:503–510. doi: 10.1111/nph.13189. PubMed DOI PMC
Yu N, et al. Delineation of metabolic gene clusters in plant genomes by chromatin signatures. Nucleic Acids Res. 2016;44:2255–2265. doi: 10.1093/nar/gkw100. PubMed DOI PMC
Kozarewa I, et al. Amplification-free Illumina sequencing-library preparation facilitates improved mapping and assembly of (G+C)-biased genomes. Nat. Methods. 2009;6:291–295. doi: 10.1038/nmeth.1311. PubMed DOI PMC
Koren S, et al. Canu: scalable and accurate long-read assembly via adaptive kmer weighting and repeat separation. Genome Res. 2017;27:722–736. doi: 10.1101/gr.215087.116. PubMed DOI PMC
Istace B, et al. De novo assembly and population genomic survey of natural yeast isolates with the Oxford Nanopore MinION sequencer. Gigascience. 2017;6:1–13. doi: 10.1093/gigascience/giw018. PubMed DOI PMC
Schmidt MH-W, et al. De novo assembly of a new Solanum pennellii accession using nanopore sequencing. Plant Cell. 2017;29:2336–2348. doi: 10.1105/tpc.17.00521. PubMed DOI PMC
Walker BJ, et al. Pilon: an integrated tool for comprehensive microbial variant detection and genome assembly improvement. PLoS ONE. 2014;9:e112963. doi: 10.1371/journal.pone.0112963. PubMed DOI PMC
Lam ET, et al. Genome mapping on nanochannel arrays for structural variation analysis and sequence assembly. Nat. Biotechnol. 2012;30:771–776. doi: 10.1038/nbt.2303. PubMed DOI PMC
Cao H, et al. Rapid detection of structural variation in a human genome using nanochannel-based genome mapping technology. Gigascience. 2014;3:34. doi: 10.1186/2047-217X-3-34. PubMed DOI PMC
Valouev A, Schwartz DC, Zhou S, Waterman MS. An algorithm for assembly of ordered restriction maps from single DNA molecules. Proc. Natl Acad. Sci. USA. 2006;103:15770–15775. doi: 10.1073/pnas.0604040103. PubMed DOI PMC
Wang C, et al. Genome-wide analysis of local chromatin packing in Arabidopsis thaliana. Genome Res. 2015;25:246–256. doi: 10.1101/gr.170332.113. PubMed DOI PMC
Chen S, Zhou Y, Chen Y, Gu J. fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34:i884–i890. doi: 10.1093/bioinformatics/bty560. PubMed DOI PMC
Servant N, et al. HiC-Pro: an optimized and flexible pipeline for Hi-C data processing. Genome Biol. 2015;16:259. doi: 10.1186/s13059-015-0831-x. PubMed DOI PMC
Durand NC, et al. Juicer provides a one-click system for analyzing loop-resolution Hi-C experiments. Cell Syst. 2016;3:95–98. doi: 10.1016/j.cels.2016.07.002. PubMed DOI PMC
Dudchenko O, et al. De novo assembly of the Aedes aegypti genome using Hi-C yields chromosome-length scaffolds. Science. 2017;356:92–95. doi: 10.1126/science.aal3327. PubMed DOI PMC
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat. Protoc. 2007;2:2233–2244. doi: 10.1038/nprot.2007.310. PubMed DOI
Lysák MA, Doležel J. Estimation of nuclear DNA content in Sesleria (Poaceae) Caryologia. 1998;52:123–132. doi: 10.1080/00087114.1998.10589127. DOI
Otto F. DAPI staining of fixed cells for high-resolution flow cytometry of nuclear DNA. Methods Cell Biol. 1990;33:105–110. doi: 10.1016/S0091-679X(08)60516-6. PubMed DOI
Doležel J, Bartoš J, Voglmayr H, Greilhuber J. Nuclear DNA content and genome size of trout and human. Cytometry A. 2003;51:127–128. doi: 10.1002/cyto.a.10013. PubMed DOI
Peng ZH, et al. The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla) Nat. Genet. 2013;45:456–4610. doi: 10.1038/ng.2569. PubMed DOI
Li H. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34:3094–3100. doi: 10.1093/bioinformatics/bty191. PubMed DOI PMC
Li H. A statistical framework for SNP calling, mutation discovery, association mapping and population genetical parameter estimation from sequencing data. Bioinformatics. 2011;27:2987–2993. doi: 10.1093/bioinformatics/btr509. PubMed DOI PMC
Kurtz S, et al. Versatile and open software for comparing large genomes. Genome Biol. 2004;5:R12. doi: 10.1186/gb-2004-5-2-r12. PubMed DOI PMC
Langmead B, Salzberg S. Fast gapped-read alignment with Bowtie 2. Nat. Methods. 2012;9:357–359. doi: 10.1038/nmeth.1923. PubMed DOI PMC
Hudakova S, et al. Sequence organization of barley centromeres. Nucleic Acids Res. 2001;29:5029–5035. doi: 10.1093/nar/29.24.5029. PubMed DOI PMC
Ou S, Jiang N. LTR_retriever: a highly accurate and sensitive program for identification of long terminal repeat retrotransposons. Plant Physiol. 2018;176:1410–1422. doi: 10.1104/pp.17.01310. PubMed DOI PMC
Ellinghaus D, Kurtz S, Willhoeft U. LTRharvest, an efficient and flexible software for de novo detection of LTR retrotransposons. BMC Bioinform. 2008;9:18. doi: 10.1186/1471-2105-9-18. PubMed DOI PMC
Xu Z, Wang H. LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res. 2007;35:W265–W268. doi: 10.1093/nar/gkm286. PubMed DOI PMC
Crescente JM, Zavallo D, Helguera M, Vanzetti LS. MITE Tracker: an accurate approach to identify miniature inverted-repeat transposable elements in large genomes. BMC Bioinform. 2018;19:348. doi: 10.1186/s12859-018-2376-y. PubMed DOI PMC
Thiel T, Michalek W, Varshney R, Graner A. Exploiting EST databases for the development and characterization of gene-derived SSR-markers in barley (Hordeum vulgare L.) Theor. Appl. Genet. 2003;106:411–422. doi: 10.1007/s00122-002-1031-0. PubMed DOI
Nawrocki EP, Eddy SR. Infernal 1.1: 100-fold faster RNA homology searches. Bioinformatics. 2013;29:2933–2935. doi: 10.1093/bioinformatics/btt509. PubMed DOI PMC
Lowe TM, Eddy SR. tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res. 1997;25:955–964. doi: 10.1093/nar/25.5.955. PubMed DOI PMC
Stanke M, Schoffmann O, Morgenstern B, Waack S. Gene prediction in eukaryotes with a generalized hidden Markov model that uses hints from external sources. BMC Bioinform. 2006;7:62. doi: 10.1186/1471-2105-7-62. PubMed DOI PMC
Slater GS, Birney E. Automated generation of heuristics for biological sequence comparison. BMC Bioinform. 2005;6:31. doi: 10.1186/1471-2105-6-31. PubMed DOI PMC
Pertea M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat. Biotechnol. 2015;33:290–295. doi: 10.1038/nbt.3122. PubMed DOI PMC
Grabherr MG, et al. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Campbell MA, Haas BJ, Hamilton JP, Mount SM, Buell CR. Comprehensive analysis of alternative splicing in rice and comparative analyses with Arabidopsis. BMC Genom. 2006;7:327. doi: 10.1186/1471-2164-7-327. PubMed DOI PMC
Li H, et al. The sequence alignment/map (SAM) format and SAMtools. Bioinformatics. 2009;25:2078–2079. doi: 10.1093/bioinformatics/btp352. PubMed DOI PMC
Zdobnov EM, Apweiler R. InterProScan - an integration platform for the signature recognition methods in InterPro. Bioinformatics. 2001;17:847–848. doi: 10.1093/bioinformatics/17.9.847. PubMed DOI
Ashburner M, et al. Gene Ontology: tool for the unification of biology. Nat. Genet. 2000;25:25–29. doi: 10.1038/75556. PubMed DOI PMC
Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat. Methods. 2015;12:357–360. doi: 10.1038/nmeth.3317. PubMed DOI PMC
Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi: 10.1186/s13059-014-0550-8. PubMed DOI PMC
Chen F, Mackey AJ, Stoeckert CJ, Jr, Roos DS. OrthoMCL-DB: querying a comprehensive multi-species collection of ortholog groups. Nucleic Acids Res. 2006;34:D363–D368. doi: 10.1093/nar/gkj123. PubMed DOI PMC
Wang D-P, Wan H-L, Zhang S, Yu J. γ-MYN: a new algorithm for estimating Ka and Ks with consideration of variable substitution rates. Biol. Direct. 2009;4:20. doi: 10.1186/1745-6150-4-20. PubMed DOI PMC
Krzywinski M, et al. Circos: an information aesthetic for comparative genomics. Genome Res. 2009;19:1639–1645. doi: 10.1101/gr.092759.109. PubMed DOI PMC
Vrána J, et al. Flow analysis and sorting of plant chromosomes. Curr. Protoc. Cytom. 2016;78:5.3.1–5.3.43. doi: 10.1002/cpcy.9. PubMed DOI
Šimková H, et al. Coupling amplified DNA from flow-sorted chromosomes to high-density SNP mapping in barley. BMC Genom. 2008;9:294. doi: 10.1186/1471-2164-9-294. PubMed DOI PMC
Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler Transform. Bioinformatics. 2009;25:1754–1760. doi: 10.1093/bioinformatics/btp324. PubMed DOI PMC
Rey MD, Moore G, Martin AC. Identification and comparison of individual chromosomes of three accessions of Hordeum chilense, Hordeum vulgare and Triticum aestivum by FISH. Genome. 2018;61:387–396. doi: 10.1139/gen-2018-0016. PubMed DOI
Weber E, Engler C, Gruetzner R, Werner S, Marillonnet S. A modular cloning system for standardized assembly of multigene constructs. PLoS ONE. 2011;6:e16765. doi: 10.1371/journal.pone.0016765. PubMed DOI PMC
Cabrera A, Martín A, Barro F. In situ comparative mapping (ISCM) of Glu-1 loci in Triticum and Hordeum. Chromosome Res. 2002;10:49–54. doi: 10.1023/A:1014270227360. PubMed DOI
Cox AV, et al. Comparison of plant telomere locations using a PCR generated synthetic probe. Ann. Bot. 1993;72:239–247. doi: 10.1006/anbo.1993.1104. DOI
Sainsbury F, Thuenemann EC, Lomonossoff GP GP. pEAQ: versatile expression vectors for easy and quick transient expression of heterologous proteins in plants. Plant Biotechnol. J. 2009;7:682–693. doi: 10.1111/j.1467-7652.2009.00434.x. PubMed DOI
Wang K-W, Sun H-X, Wu. B, Pan Y-J. Two novel olean triterpenoids from Celastrus hypoleucus. Helvetica. 2005;88:990–995. doi: 10.1002/hlca.200590094. DOI
Engler C, et al. A golden gate modular cloning toolbox for plants. ACS Synth. Biol. 2014;3:839–843. doi: 10.1021/sb4001504. PubMed DOI
Sainsbury F, Lomonossoff GP. Extremely high-level and rapid transient protein production in plants without the use of viral replication. Plant Physiol. 2008;148:1212–1218. doi: 10.1104/pp.108.126284. PubMed DOI PMC
Reed J, et al. A translational synthetic biology platform for rapid access to gram-scale quantities of novel drug-like molecules. Metab. Eng. 2017;42:185–193. doi: 10.1016/j.ymben.2017.06.012. PubMed DOI PMC
Linares C, González J, Ferrer E, Fominaya A. The use of double fluorescence in situ hybridization to physically map the positions of 5S rDNA genes in relation to the chromosomal location of 18S-5.8S-26S rDNA and a C genome specific DNA sequence in the genus Avena. Genome. 1996;39:535–542. doi: 10.1139/g96-068. PubMed DOI