Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis

. 2017 ; 8 () : 1833. [epub] 20171116

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid29250081

Phragmites australis is a cosmopolitan grass and often the dominant species in the ecosystems it inhabits. Due to high intraspecific diversity and phenotypic plasticity, P. australis has an extensive ecological amplitude and a great capacity to acclimate to adverse environmental conditions; it can therefore offer valuable insights into plant responses to global change. Here we review the ecology and ecophysiology of prominent P. australis lineages and their responses to multiple forms of global change. Key findings of our review are that: (1) P. australis lineages are well-adapted to regions of their phylogeographic origin and therefore respond differently to changes in climatic conditions such as temperature or atmospheric CO2; (2) each lineage consists of populations that may occur in geographically different habitats and contain multiple genotypes; (3) the phenotypic plasticity of functional and fitness-related traits of a genotype determine the responses to global change factors; (4) genotypes with high plasticity to environmental drivers may acclimate or even vastly expand their ranges, genotypes of medium plasticity must acclimate or experience range-shifts, and those with low plasticity may face local extinction; (5) responses to ancillary types of global change, like shifting levels of soil salinity, flooding, and drought, are not consistent within lineages and depend on adaptation of individual genotypes. These patterns suggest that the diverse lineages of P. australis will undergo intense selective pressure in the face of global change such that the distributions and interactions of co-occurring lineages, as well as those of genotypes within-lineages, are very likely to be altered. We propose that the strong latitudinal clines within and between P. australis lineages can be a useful tool for predicting plant responses to climate change in general and present a conceptual framework for using P. australis lineages to predict plant responses to global change and its consequences.

Zobrazit více v PubMed

Achenbach L., Brix H. (2013). Can differences in salinity tolerance explain the distribution of four genetically distinct lineages of Phragmites australis in the Mississippi River Delta? Hydrobiologia 737 5–23. 10.1007/s10750-013-1601-y DOI

Achenbach L., Brix H. (2014). Monitoring the short-term response to salt exposure of two genetically distinct Phragmites australis clones with different salinity tolerance levels. Am. J. Plant Sci. 5 1098–1109. 10.4236/ajps.2014.58122 DOI

Achenbach L., Eller F., Nguyen L. X., Brix H. (2013). Differences in salinity tolerance of genetically distinct Phragmites australis clones. AoB PLANTS 5 plt019 10.1093/aobpla/plt019 DOI

Achenbach L., Lambertini C., Brix H. (2012). Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range. AoB PLANTS 2012:pls017. 10.1093/aobpla/pls017 PubMed DOI PMC

Afreen F., Zobayed S. M. A., Armstrong J., Armstrong W. (2007). Pressure gradients along whole culms and leaf sheaths, and other aspects of humidity-induced gas transport in Phragmites australis. J. Exp. Bot. 58 1651–1662. 10.1093/jxb/erm017 PubMed DOI

Ainsworth E. A., Rogers A. (2007). The response of photosynthesis and a stomatal conductance to rising CO2: mechanisms and environmental interactions. Plant Cell Environ. 30 258–270. 10.1111/j.1365-3040.2007.01641.x PubMed DOI

Allen W. J., Meyerson L. A., Cummings D., Anderson J., Bhattarai G. P., Cronin J. T. (2017). Biogeography of a plant invasion: drivers of latitudinal variation in enemy release. Glob. Ecol. Biogeogr. 26 435–446. 10.1111/geb.12550 DOI

Almeida J. P., Montúfar R., Anthelme F. (2013). Patterns and origin of intraspecific functional variability in a tropical alpine species along an altitudinal gradient. Plant Ecol. Divers. 6 423–433. 10.1080/17550874.2012.702137 DOI

Alvarez M. G., Tron F., Mauchamp A. (2005). Sexual versus asexual colonization by Phragmites australis: 25-year reed dynamics in a Mediterranean marsh, southern France. Wetlands 25 639–647. 10.1672/0277-5212(2005)025[0639:SVACBP]2.0.CO;2 DOI

Antonielli M., Pasqualini S., Batini P., Ederli L., Massacci A., Loreto F. T. I. (2002). Physiological and anatomical characterisation of Phragmites australis leaves. Aquat. Bot. 72 55–66. 10.1016/S0304-3770(01)00220-0 DOI

Araki R., Mori M., Mori M., Hasegawa H. (2005). Genetic differences in nitrate uptake in two clones of the common reed, Phragmites australis. Breed. Sci. 55 297–302. 10.1270/jsbbs.55.297 DOI

Armstrong J., Armstrong W. (1991). A convective through-flow of gases in Phragmites australis (Cav) Trin Ex Steud. Aquat. Bot. 39 75–88. 10.1016/0304-3770(91)90023-X DOI

Armstrong J., Armstrong W., Armstrong I. B., Pittaway G. R. (1996a). Senescence, and phytotoxin, insect, fungal and mechanical damage: factors reducing convective gas-flows in Phragmites australis. Aquat. Bot. 54 211–226. 10.1016/0304-3770(96)82384-9 DOI

Armstrong J., Armstrong W., Beckett P. M., Halder J. E., Lythe S., Holt R., et al. (1996b). Pathways of aeration and the mechanisms and beneficial effects of humidity- and Venturi-induced convections in Phragmites australis (Cav) Trin ex Steud. Aquat. Bot. 54 177–197. 10.1016/0304-3770(96)01044-3 DOI

Armstrong W., Armstrong J., Beckett P. M. (1996c). Pressurized aeration in wetland macrophytes: some theoretical aspects of humidity-induced convection and thermal transpiration. Folia Geobot. 31 25–36. 10.1007/BF02803991 DOI

Aspinwall M. J., Lowry D. B., Taylor S. H., Juenger T. E., Hawkes C. V., Johnson M. V. V., et al. (2013). Genotypic variation in traits linked to climate and aboveground productivity in a widespread C4 grass: evidence for a functional trait syndrome. New Phytol. 199 966–980. 10.1111/nph.12341 PubMed DOI

Baldwin A. H., Kettenring K. M., Whigham D. F. (2010). Seed banks of Phragmites australis-dominated brackish wetlands: relationships to seed viability, inundation, and land cover. Aquat. Bot. 93 163–169. 10.1016/j.aquabot.2010.06.001 DOI

Bart D., Hartman J. M. (2003). The role of large rhizome dispersal and low salinity windows in the establishment of common reed, Phragmites australis, in salt marshes: new links to human activities. Estuaries 26 436–443. 10.1007/BF02823720 DOI

Bastlová D., Bastl M., Cizkova H., Kvet J. (2006). Plasticity of Lythrum salicaria and Phragmites australis growth characteristics across a European geographical gradient. Hydrobiologia 570 237–242. 10.1007/s10750-006-0186-0 DOI

Beckett L. H., Baldwin A. H., Kearney M. S. (2016). Tidal marshes across a chesapeake bay subestuary are not keeping up with sea-level rise. PLOS ONE 11:e0159753. 10.1371/journal.pone.0159753.s001 PubMed DOI PMC

Bender M. A., Knutson T. R., Tuleya R. E., Sirutis J. J., Vecchi G. A., Garner S. T., et al. (2010). Modeled impact of anthropogenic warming on the frequency of intense Atlantic hurricanes. Science 327 454–458. 10.1126/science.1180568 PubMed DOI

Bernal B., Megonigal J. P., Mozdzer T. J. (2017). An invasive wetland grass primes deep soil carbon pools. Glob. Change Biol. 23 2104–2116. 10.1111/gcb.13539 PubMed DOI

Bhattarai G. P., Cronin J. T. (2014). Hurricane activity and the large-scale pattern of spread of an invasive plant species. PLOS ONE 9:e98478. 10.1371/journal.pone.0098478 PubMed DOI PMC

Bhattarai G. P., Meyerson L. A., Anderson J., Cummings D., Allen W. J., Cronin J. T. (2017a). Biogeography of a plant invasion: genetic variation and plasticity in latitudinal clines for traits related to herbivory. Ecol. Monogr. 87 57–75. 10.1002/ecm.1233 DOI

Bhattarai G. P., Meyerson L. A., Cronin J. T. (2017b). Geographical variation in apparent competition between native and invasive Phragmites australis. Ecology 98 349–358. 10.1002/ecy.1646 PubMed DOI

Bodensteiner L. R., Gabriel A. O. (2003). Response of mid-water common reed stands to water level variations and winter conditions in Lake Poygan, Wisconsin, United States. Aquat. Bot. 76 49–64. 10.1016/S0304-3770(03)00013-5 DOI

Bolnick D. I., Amarasekare P., Arau jo M. S., Bürger R., Levine J. M., Novak M. (2011). Why intraspecific trait variation matters in community ecology. Trends Ecol. Evol. 26 183–192. 10.1016/j.tree.2011.01.009 PubMed DOI PMC

Bradshaw A. D. (1965). Evolutionary significance of phenotypic plasticity in plants. Adv. Genet. 13 115–155. 10.1016/S0065-2660(08)60048-6 DOI

Bragato C., Brix H., Malagoli M. (2006). Accumulation of nutrients and heavy metals in Phragmites australis (Cav.) Trin. ex Steudel and Bolboschoenus maritimus (L.) Palla in a constructed wetland of the Venice lagoon watershed. Environ. Pollut. 144 967–975. 10.1016/j.envpol.2006.01.046 PubMed DOI

Bräutigam A., Gowik U. (2016). Photorespiration connects C3 and C4 photosynthesis. J. Exp. Bot. 67 2953–2962. 10.1093/jxb/erw056 PubMed DOI

Brisson J., Paradis E., Bellavance M. E. (2008). Evidence of sexual reproduction in the invasive common reed (Phragmites australis subsp. australis; Poaceae) in Eastern Canada: A possible consequence of global warming. Rhodora 110 225–230. 10.3119/07-15.1 DOI

Brix H. (1989). Gas-Exchange through dead culms of reed, Phragmites australis (Cav) Trin Ex Steudel. Aquat. Bot. 35 81–98. 10.1016/0304-3770(89)90069-7 DOI

Brix H. (1997). Do macrophytes play a role in constructed treatment wetlands? Water Sci. Technol. 35 11–17.

Brix H. (1999a). Genetic diversity, ecophysiology and growth dynamics of reed (Phragmites australis). Aquat. Bot. 64 179–184.

Brix H. (1999b). The European research project on reed die-back and progression (EUREED). Limnol. Ecol. Manag. Inland Waters 29 5–10. 10.1016/S0075-9511(99)80033-4 DOI

Brix H., Schierup H. H. (1989). The use of aquatic macrophytes in water-pollution control. Ambio 18 100–107.

Brix H., Sorrell B. K., Lorenzen B. (2001). Are Phragmites-dominated wetlands a net source or net sink of greenhouse gases? Aquat. Bot. 69 313–324. 10.1016/S0304-3770(01)00145-0 DOI

Brix H., Sorrell B. K., Orr P. T. (1992). Internal pressurization and convective gas flow in some emergent freshwater macrophytes. Limnol. Oceanogr. 37 1420–1433. 10.4319/lo.1992.37.7.1420 DOI

Brix H., Sorrell B. K., Schierup H. H. (1996). Gas fluxes achieved by in situ convective flow in Phragmites australis. Aquat. Bot. 54 151–163. 10.1016/0304-3770(96)01042-X DOI

Burdick D. M., Buchsbaum R., Holt E. (2001). Variation in soil salinity associated with expansion of Phragmites australis in salt marshes. Environ. Exp. Bot. 46 247–261. 10.3389/fpls.2016.00432 PubMed DOI PMC

Burdick D. M., Konisky R. A. (2003). Determinants of expansion for Phragmites australis, common reed, in natural and impacted coastal marshes. Estuaries 26 407–416. 10.1007/BF02823717 DOI

Caplan J. S., Hager R. N., Megonigal J. P., Mozdzer T. J. (2015). Global change accelerates carbon assimilation by a wetland ecosystem engineer. Environ. Res. Lett. 10 115006 10.1088/1748-9326/10/11/115006 DOI

Caplan J. S., Wheaton C. N., Mozdzer T. J. (2014). Belowground advantages in construction cost facilitate a cryptic plant invasion. AoB PLANTS 6:plu020. 10.1093/aobpla/plu020 PubMed DOI PMC

Chambers R., Osgood D., Bart D., Montalto F. (2003). Phragmites australis invasion and expansion in tidal wetlands: interactions among salinity, sulfide, and hydrology. Estuaries 26 398–406. 10.1007/BF02823716 DOI

Chambers R. M., Meyerson L. A., Saltonstall K. (1999). Expansion of Phragmites australis into tidal wetlands of North America. Aquat. Bot. 64 261–273. 10.1016/S0304-3770(99)00055-8 DOI

Chambers R. M., Mozdzer T. J., Ambrose J. C. (1998). Effects of salinity and sulfide on the distribution of Phragmites australis and Spartina alterniflora in a tidal saltmarsh. Aquat. Bot. 62 161–169. 10.1016/S0304-3770(98)00095-3 DOI

Chapman D. S., Haynes T., Beal S., Essl F., Bullock J. M. (2014). Phenology predicts the native and invasive range limits of common ragweed. Glob. Change Biol. 20 192–202. 10.1111/gcb.12380 PubMed DOI

Chaves M. M., Pereira J. S., Maroco J., Rodrigues M. L., Ricardo C. P. P., Osório M. L., et al. (2002). How plants cope with water stress in the field? Photosynthesis and growth. Ann. Bot. 89 907–916. 10.1093/aob/mcf105 PubMed DOI PMC

Chen K. M., Gong H. J., Chen G. C., Wang S. M., Zhang C. L. (2003). Up-regulation of glutathione metabolism and changes in redox status involved in adaptation of reed (Phragmites communis) ecotypes to drought-prone and saline habitats. J. Plant Physiol. 160 293–301. 10.1078/0176-1617-00927 PubMed DOI

Christin P. A., Salamin N., Kellogg E. A., Vicentini A., Besnard G. (2009). Integrating phylogeny into studies of C4 variation in the grasses. Plant Physiol. 149 82–87. 10.1104/pp.108.128553 PubMed DOI PMC

Chu H., Cho W. K., Jo Y. (2011). Identification of natural hybrids in Korean Phragmites using haplotype and genotype analyses. Plant Syst. Evol. 293 247–253. 10.1007/s00606-011-0423-5 DOI

Čížková H., Brix H., Kopecky J., Lukavska J. (1999). Organic acids in the sediments of wetlands dominated by Phragmites australis: evidence of phytotoxic concentrations. Aquat. Bot. 64 303–315. 10.1016/S0304-3770(99)00058-3 DOI

Cizkova-Koncalova H., Kvet J., Thompson K. (1992). Carbon starvation: a key to reed decline in eutrophic lakes. Aquat. Bot. 43 105–113. 10.1016/0304-3770(92)90036-I DOI

Clevering O. A. (1998). Effects of litter accumulation and water table on morphology and productivity of Phragmites australis. Wetl. Ecol. Manag. 5 275–287. 10.1023/A:1008233912279 DOI

Clevering O. A. (1999). Between-and within-population differences in Phragmites australis. Oecologia 121 447–457. 10.1007/s004420050951 PubMed DOI

Clevering O. A., Brix H., Lukavská J. (2001). Geographic variation in growth responses in Phragmites australis. Aquat. Bot. 69 89–108. 10.1111/gcb.12704 PubMed DOI

Clevering O. A., Lissner J. (1999). Taxonomy, chromosome numbers, clonal diversity and population dynamics of Phragmites australis. Aquat. Bot. 64 185–208. 10.1016/S0304-3770(99)00059-5 DOI

Colautti R. I., Alexander J. M., Dlugosch K. M., Keller S. R., Sultan S. E. (2017). Invasions and extinctions through the looking glass of evolutionary ecology. Philos. Trans. R. Soc. B 372 20160031. 10.1098/rstb.2016.0031 PubMed DOI PMC

Coomes D. A., Grubb P. J. (2000). Impacts of root competition in forests and woodlands: a theoretical framework and review of experiments. Ecol. Monogr. 70 171–207. 10.1890/0012-9615(2000)070[0171:IORCIF]2.0.CO;2 DOI

Coops H., van den Brink F. W. B., van der Velde G. (1996). Growth and morphological responses of four helophyte species in an experimental water-depth gradient. Aquat. Bot. 54 11–24. 10.1016/0304-3770(96)01025-X DOI

Cronin J. T., Bhattarai G. P., Allen W. J., Meyerson L. A. (2015). Biogeography of a plant invasion: plant-herbivore interactions. Ecology 96 1115–1127. 10.1890/14-1091.1 PubMed DOI

Crutsinger G. M., Souza L., Sanders N. J. (2008). Intraspecific diversity and dominant genotypes resist plant invasions. Ecol. Lett. 11 16–23. PubMed

Cui B., Hua Y., Wang C., Liao X., Tan X., Tao W. (2010). Estimation of ecological water requirements based on habitat response to water level in Huanghe River Delta, China. Chin. Geogr. Sci. 20 318–329. 10.1007/s11769-010-0404-6 DOI

Den Hartog C., Květ J., Sukopp H. (1989). Reed. A common species in decline. Aquat. Bot. 35 1–4. 10.1016/0304-3770(89)90062-4 DOI

Douhovnikoff V., Hazelton E. L. (2014). Clonal growth: Invasion or stability? A comparative study of clonal architecture and diversity in native and introduced lineages of Phragmites australis (Poaceae). Am. J. Bot. 10 1577–1584. 10.3732/ajb.1400177 PubMed DOI

Drenovsky R. E., Grewell B. J., D’Antonio C. M., Funk J. L., James J. J., Molinari N., et al. (2012). A functional trait perspective on plant invasion. Ann. Bot. 110 141–153. 10.1093/aob/mcs100 PubMed DOI PMC

Dukes J. S., Mooney H. A. (1999). Does global change increase the success of biological invaders? Trends Ecol. Evol. 14 135–139. PubMed

Dykyjová D., Ondok J. P., Priban K. (1970). Seasonal changes in productivity and vertical structure of reed-stands (Phragmites communis Trin.). Photosynthetica 4 280–287.

Eid I. M., Shaltout K. H., Al-Sodany Y. M., Kai Jensen K. (2010). Effects of abiotic conditions on Phragmites australis along geographic gradients in Lake Burullus. Egypt. Aquat. Bot. 92 86–92. 10.1016/j.aquabot.2009.10.010 DOI

Elhaak M. A., Eldin A. S., Sammour R. H. (1993). Response of Phragmites australis to water-stress from flooding to drought. Pak. J. Bot. 25 41–46.

Eller F., Brix H. (2012). Different genotypes of Phragmites australis show distinct phenotypic plasticity in response to nutrient availability and temperature. Aquat. Bot. 103 89–97. 10.1016/j.aquabot.2012.07.001 DOI

Eller F., Lambertini C., Nguyen L. X., Achenbach L., Brix H. (2013). Interactive effects of elevated temperature and CO2 on two phylogeographically distinct clones of common reed (Phragmites australis). AoB PLANTS 5 pls051 10.1093/aobpla/pls051 DOI

Eller F., Lambertini C., Nguyen L. X., Brix H. (2014a). Increased invasive potential of non-native Phragmites australis: elevated CO2 and temperature alleviate salinity effects on photosynthesis and growth. Glob. Change Biol. 20 531–543. PubMed

Eller F., Lambertini C., Nielsen M. W., Radutoiu S., Brix H. (2014b). Expression of major photosynthetic and salt-resistance genes in invasive reed lineages grown under elevated CO2 and temperature. Ecol. Evol. 4 4161–4172. 10.1002/ece3.1282 PubMed DOI PMC

Engels J. G., Jensen K. (2010). Role of biotic interactions and physical factors in determining the distribution of marsh species along an estuarine salinity gradient. Oikos 119 679–685. 10.1111/j.1600-0706.2009.17940.x DOI

Engloner A. I. (2004). Annual growth dynamics and morphological differences of reed (Phragmites australis [Cav.] Trin. ex Steudel) in relation to water supply. Flora 199 256–262. 10.1078/0367-2530-00153 DOI

Engloner A. I. (2009). Structure, growth dynamics and biomass of reed (Phragmites australis) - A review. Flora 204 331–346. 10.1016/j.flora.2008.05.001 DOI

Engloner A. I., Major A. (2011). Clonal diversity of Phragmites australis propagating along water depth gradient. Aquat. Bot. 94 172–176. 10.1016/j.aquabot.2011.02.007 DOI

Engloner A. I., Szego D. (2016). Genetic diversity of riverine reed stands indicating the water regime of the habitat. Ecol. Indic. 61 846–849. 10.1016/j.ecolind.2015.10.037 DOI

Erdei L., Horváth F., Tari I., Pécsváradi A., Szegletes Z., Dulai S. (2001). Differences in photorespiration, glutamine synthetase and polyamines between fragmented and closed stands of Phragmites australis. Aquat. Bot. 69 165–176. 10.1016/S0304-3770(01)00136-X DOI

Franks S. J., Weber J. J., Aitken S. N. (2014). Evolutionary and plastic responses to climate change in terrestrial plant populations. Evol. Appl. 7 123–139. 10.1111/eva.12112 PubMed DOI PMC

Galloway J. N., Dentener F. J., Capone D. G., Boyer E. W., Howarth R. W., Seitzinger S. P., et al. (2004). Nitrogen cycles: past, present, and future. Biogeochemistry 70 153–226. 10.1007/s10533-004-0370-0 DOI

Gao L., Tang S., Zhuge L., Nie M., Zhu Z., Li B., et al. (2012). Spatial genetic structure in natural populations of Phragmites australis in a mosaic of saline habitats in the Yellow River Delta, China. PLOS ONE 7:e43334. 10.1371/journal.pone.0043334 PubMed DOI PMC

Ge Z. M., Zhang L. Q., Yuan L., Zhang C. (2014). Effects of salinity on temperature-dependent photosynthetic parameters of a native C3 and a non-native C4 marsh grass in the Yangtze estuary, China. Photosynthetica 52 484–492. 10.1007/s11099-014-0055-4 DOI

Gigante D., Angiolini C., Landucci F., Maneli F., Nisi B., Vaselli O., et al. (2014). New occurrence of reed bed decline in southern Europe: do permanent flooding and chemical parameters play a role? C. R. Biol. 337 487–498. 10.1016/j.crvi.2014.05.005 PubMed DOI

Gioria M., Osborne B. A. (2014). Resource competition in plant invasions: emerging patterns and research needs. Front. Plant Sci. 5:501. 10.3389/fpls.2014.00501 PubMed DOI PMC

Gong C. M., Bai J., Deng J. M., Wang G. X., Liu X. P. (2011). Leaf anatomy and photosynthetic carbon metabolic characteristics in Phragmites communis in different soil water availability. Plant Ecol. 212 675–687. 10.1007/s11258-010-9854-2 DOI

Gorai M., Vadel A. M., Neffati M. (2006). Seed germination characteristics of Phragmites communis: effects of temperature and salinity. Belg. J. Bot. 139 78–86.

Gorenflot R., Hubac J. M., Jay M., Lalande P. (1983). “Geographic distribution, polyploidy and pattern of flavonoids in Phragmites australis (Cav.) Trin. ex Steud,” in Numerical Taxonomy, ed. Felsenstein J. (Berlin: Springer; ), 474–478.

Gries C., Kappen L., Losch R. (1990). Mechanism of flood tolerance in reed, Phragmites australis (Cav) Trin Ex Steudel. New Phytol. 114 589–593. 10.1111/j.1469-8137.1990.tb00429.x DOI

Guo W.-Y., Lambertini C., Li X.-Z., Meyerson L. M., Brix H. (2013). Invasion of Old World Phragmites australis in the New World: precipitation and temperature patterns combined with human influences redesign the invasive nice. Glob. Change Biol. 19 3406–3422. PubMed

Guo W.-Y., Lambertini C., Nguyen L. X., Li X.-Z., Brix H. (2014). Preadaptation and post-introduction evolution facilitate the invasion of Phragmites australis in North America. Ecol. Evol. 4 4567–4577. 10.1002/ece3.1286 PubMed DOI PMC

Han Z., Cui B. (2016). Performance of macrophyte indicators to eutrophication pressure in ponds. Ecol. Eng. 96 8–19. 10.1016/j.ecoleng.2015.10.019 DOI

Hanganu J., Mihail G., Coops H. (1999). Responses of ecotypes of Phragmites australis to increased seawater influence: a field study in the Danube Delta, Romania. Aquat. Bot. 64 351–358. 10.1016/S0304-3770(99)00062-5 DOI

Hansen D. L., Lambertini C., Jampeetong A., Brix H. (2007). Clone-specific differences in Phragmites australis: effects of ploidy level and geographic origin. Aquat. Bot. 86 269–279. 10.1016/j.aquabot.2006.11.005 DOI

Haslam S. M. (1970). The performance of Phragmites communis Trin. in relation to water-supply. Ann. Bot. 34 867–877. 10.1093/oxfordjournals.aob.a084418 DOI

Haslam S. M. (1972). Phragmites communis Trin. (Arundo phragmites L., ? Phragmites australis (Cav.) Trin. ex Steudel). J. Ecol. 60 585–610. 10.2307/2258363 DOI

Haslam S. M. (1973). Some aspects of the life history and autecology of Phragmites communis Trin. A review. Pol. Arch. Hydrobiol. 20 79–100.

Haslam S. M. (1975). The performance of Phragmites communis Trin. in relation to temperature. Ann. Bot. 39 883–888. 10.1093/oxfordjournals.aob.a085006 DOI

Hauber D. P., Saltonstall K., White D. A., Hood C. S. (2011). Genetic variation in the common reed, Phragmites australis, in the Mississippi River delta marshes: evidence for multiple introductions. Estuar. Coast 34 851–862. 10.1007/s12237-011-9391-9 DOI

Hauber D. P., White D. A., Powers S. P., Defrancesch F. R. (1991). Isozyme variation and correspondence with unusual infrared reflectance patterns in Phragmites australis (Poaceae). Plant Syst. Evol. 178 1–8. 10.1007/BF00937978 DOI

Hazelton E. L., Mozdzer T. J., Burdick D. M., Kettenring K. M., Whigham D. F. (2014). Phragmites australis management in the United States: 40 years of methods and outcomes. AoB PLANTS 6 plu001. 10.1093/aobpla/plu001 PubMed DOI PMC

Hazelton E. L. G., Knight T. J., Theodose T. A. (2010). Glutamine synthetase partitioning in native and introduced salt marsh grasses. Mar. Ecol. Prog. Ser. 414 57–64. 10.3354/meps08704 DOI

Hellings S. E., Gallagher J. L. (1992). The effects of salinity and flooding on Phragmites australis. J. Appl. Ecol. 29 41–49. 10.3732/ajb.1600062 PubMed DOI

Henriques F. S., Webb M. E. (1989). Comparative study of two grasses from different habitats by scanning electron microscopy. Cytologia 54 299–305. 10.1508/cytologia.54.299 DOI

Hernández-Crespo C., Oliver N., Bixquert J., Gargallo S., Martín M. (2016). Comparison of three plants in a surface flow constructed wetland treating eutrophic water in a Mediterranean climate. Hydrobiologia 774 183–192. 10.1007/s10750-015-2493-9 DOI

Hiesey W. M., Clausen J., Keck D. D. (1942). Relations between climate and intraspecific variation in plants. Am. Nat. 76 5–22. 10.1086/281009 PubMed DOI

Holdredge C., Bertness M. D., von Wettberg E., Silliman B. R. (2010). Nutrient enrichment enhances hidden differences in phenotype to drive a cryptic plant invasion. Oikos 119 1776–1784. 10.1111/j.1600-0706.2010.18647.x DOI

Holmes G. D., Hall N. E., Gendall A. R., Boon P. I., James E. A. (2016). Using transcriptomics to identify differential gene expression in response to salinity among Australian Phragmites australis clones. Front. Plant Sci. 7:432. 10.3389/fpls.2016.00432 PubMed DOI PMC

Hughes A. R., Schenck F. R., Bloomberg J., Hanley T. C., Feng D., Gouhier T. C., et al. (2016). Biogeographic gradients in ecosystem processes of the invasive ecosystem engineer Phragmites australis. Biol. Invasions 18 2577–2595. 10.1007/s10530-016-1143-0 DOI

Ikegami M., van Hal S., van Rheenen J. W. A., Whigham D. F., Werger M. J. A. (2008). Spatial division of labor of Schoenoplectus americanus. Plant Ecol. 199 55–64. 10.1007/s11258-008-9411-4 DOI

IPCC (2007). Summary for Policymakers. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge: Cambridge University Press.

IPCC (2014). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change, eds Core Writing Team Pachauri R. K., Geneva L. A. Meyer: IPCC, 151.

Irmak S., Kabenge I., Rudnick D., Knezevic S., Woodward D., Moravek M. (2013). Evapotranspiration crop coefficients for mixed riparian plant community and transpiration crop coefficients for Common reed, Cottonwood and Peach-leaf willow in the Platte River Basin, Nebraska-United States. J. Hydrol. 481 177–190. 10.1016/j.jhydrol.2012.12.032 DOI

Jackson M. B., Armstrong W. (1999). Formation of aerenchyma and the processes of plant ventilation in relation to soil flooding and submergence. Plant Biol. 1 274–287. 10.1111/j.1438-8677.1999.tb00253.x DOI

Jump A. S., Peñuelas J. (2005). Running to stand still: adaptation and the response of plants to rapid climate change. Ecol. Lett. 8 1010–1020. 10.1111/j.1461-0248.2005.00796.x PubMed DOI

Karunaratne S., Asaeda T., Yutani K. (2003). Growth performance of Phragmites australis in Japan: influence of geographic gradient. Environ. Exp. Bot. 50 51–66. 10.1016/S0098-8472(02)00114-4 DOI

Kettenring K. M., de Blois S., Hauber D. P. (2012). Moving from a regional to a continental perspective of Phragmites australis invasion in North America. AoB PLANTS 2012:pls040. 10.1093/aobpla/pls040 PubMed DOI PMC

Kettenring K. M., McCormick M. K., Baron H. M., Whigham D. F. (2010). Phragmites australis (common reed) invasion in the Rhode river subestuary of the Chesapeake bay: disentangling the effects of foliar nutrients, genetic diversity, patch size, and seed viability. Estuar. Coasts 33 118–126. 10.1007/s12237-009-9241-1 DOI

Kettenring K. M., McCormick M. K., Baron H. M., Whigham D. F. (2011). Mechanisms of Phragmites australis invasion: feedbacks among genetic diversity, nutrients, and sexual reproduction. J. Appl. Ecol. 48 1305–1313. 10.1111/j.1365-2664.2011.02024.x DOI

Kettenring K. M., Mock K. E. (2012). Genetic diversity, reproductive mode, and dispersal differ between the cryptic invader, Phragmites australis, and its native conspecific. Biol. Invasions 14 2489–2504. 10.1007/s10530-012-0246-5 DOI

Kettenring K. M., Mock K. E., Zaman B., McKee M. (2016). Life on the edge: reproductive mode and rate of invasive Phragmites australis patch expansion. Biol. Invasions 18 2475–2495. 10.1007/s10530-016-1125-2 DOI

Kettenring K. M., Whigham D. F. (2009). Seed viability and seed dormancy of non-native Phragmites australis in suburbanized and forested watersheds of the Chesapeake Bay, States United. Aquat. Bot. 91 199–204. 10.1016/j.aquabot.2009.06.002 DOI

Kettenring K. M., Whigham D. F., Hazelton E. L. G., Gallagher S. K., Weiner H. M. (2015). Biotic resistance, disturbance, and mode of colonization impact the invasion of a widespread, introduced wetland grass. Ecol. Appl. 25 466–480. 10.1890/14-0434.1 PubMed DOI

Kim J., Verma S. B., Billesbach D. P. (1998). Seasonal variation in methane emission from a temperate Phragmites-dominated marsh: effect of growth stage and plant-mediated transport. Glob. Change Biol. 5 433–440. 10.1046/j.1365-2486.1999.00237.x DOI

Kim S. Y., Kang H. (2008). Effects of elevated CO2 on below-ground processes in temperate marsh microcosms. Hydrobiologia 605 123–130. 10.1007/s10750-008-9325-0 DOI

Knutson T. R., McBride J. L., Chan J., Emanuel K., Holland G., Landsea C., et al. (2010). Tropical cyclones and climate change. Nat. Geosci. 3 157–163. 10.1038/ngeo779 DOI

Kolada A. (2016). The use of helophytes in assessing eutrophication of temperate lowland lakes: Added value? Aquat. Bot. 129 44–54. 10.1016/j.aquabot.2015.12.002 DOI

Koppitz H. (1999). Analysis of genetic diversity among selected populations of Phragmites australis world-wide. Aquat. Bot. 64 209–221. 10.1016/S0304-3770(99)00051-0 DOI

Koppitz H. (2004). Effects of flooding on the amino acid and carbohydrate patterns of Phragmites australis. Limnologica 34 37–47. 10.1016/S0075-9511(04)80020-3 DOI

Koppitz H., Dewender M., Ostendorp W., Schmieder K. (2004). Amino acids as indicators of physiological stress in common reed Phragmites australis affected by an extreme flood. Aquat. Bot. 7 277–294. 10.1016/j.aquabot.2004.05.002 DOI

Kriticos D. J., Webber B. L., Leriche A., Ota N., Bathols J., Macadam I., et al. (2012). CliMond: global high resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 3 53–64. 10.1111/j.2041-210X.2011.00134.x DOI

Kühl H., Woitke P., Kohl J. G. (1997). Strategies of nitrogen cycling of Phragmites australis at two sites differing in nutrient availability. Int. Rev. Gesamten Hydrobiol. 82 57–66. 10.1002/iroh.19970820108 DOI

Lambertini C. (2016). Heteroplasmy due to chloroplast paternal leakage: another insight into Phragmites haplotypic diversity in North America. Biol. Invasions 18 2443–2455. 10.1007/s10530-016-1193-3 DOI

Lambertini C., Eller F. P., Achenbach L., Nguyen L. X., Guo W.-Y., Brix H. (2012a). “Revisiting Phragmites australis variation in the Danube Delta with DNA molecular techniques,” in International Conference Proceedings: Water Resources and Wetlands, 14–16 September 2012, Tulcea, 142–150.

Lambertini C., Gustafsson M. H. G., Frydenberg J., Lissner J., Speranza M., Brix H. (2006). A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Syst. Evol. 258 161–182. 10.1007/s00606-006-0412-2 DOI

Lambertini C., Mendelsshon I. A., Gustafsson M. G. H., Olesen B., Riis T., Sorrell B. K., et al. (2012b). Tracing the origin of Gulf Coast Phragmites (Poaceae) – a story of long distance dispersal and hybridization. Am. J. Bot. 99 538–551. 10.3732/ajb.1100396 PubMed DOI

Lambertini C., Sorrell B. K., Riis T., Olesen B., Brix H. (2012c). Exploring the borders of European Phragmites within a cosmopolitan genus. AoB PLANTS 2012:pls020. 10.1093/aobpla/pls020 PubMed DOI PMC

Latzel V., Klimesova J. (2010). Transgenerational plasticity in clonal plants. Evol. Ecol. 24 1537–1543. 10.1007/s10682-010-9385-2 DOI

Lavergne S., Molofsky J. (2004). Reed canary grass (Phalaris arundinacea) as a biological model in the study of plant invasions. Crit. Rev. Plant Sci. 23 415–429. 10.1080/07352680490505934 DOI

Lavergne S., Molofsky J. (2007). Increased genetic variation and evolutionary potential drive the success of an invasive grass. Proc. Natl. Acad. Sci. U.S.A. 104 3883–3888. 10.1073/pnas.0607324104 PubMed DOI PMC

Lee J., An S. (2015). Effect of dikes on the distribution and characteristics of Phragmites australis in temperate intertidal wetlands located in the south sea of Korea. Ocean Sci. J. 50 49–59. 10.1007/s12601-015-0004-6 DOI

Lessmann J. M., Brix H., Bauer V., Clevering O. A., Comín F. A. (2001). Effect of climatic gradients on the photosynthetic responses of four Phragmites australis populations. Aquat. Bot. 69 109–126. 10.1016/S0304-3770(01)00133-4 DOI

Li F., Xie Y., Chen X., Hou Z., Li X., Deng Z., et al. (2013). Succession of aquatic macrophytes in the modern Yellow River Delta after 150 years of alluviation. Wetlands Ecol. Manage. 21 219–228. 10.1007/s11273-013-9297-3 DOI

Lissner J., Schierup H. H. (1997). Effects of salinity on the growth of Phragmites australis. Aquat. Bot. 55 247–260. 10.1016/S0304-3770(96)01085-6 PubMed DOI

Lissner J., Schierup H. H., Comín F. A., Astorga V. (1999a). Effect of climate on the salt tolerance of two Phragmites australis populations.: I. Growth, inorganic solutes, nitrogen relations and osmoregulation. Aquat. Bot. 64 317–333.

Lissner J., Schierup H. H., Comín F. A., Astorga V. (1999b). Effect of climate on the salt tolerance of two Phragmites australis populations.: II. Diurnal CO2 exchange and transpiration. Aquat. Bot. 64 335–350. 10.1016/S0304-3770(99)00061-3 DOI

Ma B., Lv X., Warren A., Gong J. (2013). Shifts in diversity and community structure of endophytic bacteria and archaea across root, stem and leaf tissues in the common reed, Phragmites australis, along a salinity gradient in a marine tidal wetland of northern China. Antonie Van Leeuwenhoek 104 759–768. 10.1007/s10482-013-9984-3 PubMed DOI

Mathiasen P., Premoli A. C. (2016). Living on the edge: adaptive and plastic responses of the tree Nothofagus pumilio to a long-term transplant experiment predict rear-edge upward expansion. Oecologia 181 607–619. 10.1007/s00442-016-3568-7 PubMed DOI

Matoh T., Matsushita N., Takahashi E. (1988). Salt tolerance of the reed plant Phragmites communis. Physiol. Plant. 72 8–14. 10.1111/j.1399-3054.1988.tb06615.x DOI

Mauchamp A., Methy M. (2004). Submergence-induced damage of photosynthetic apparatus in Phragmites australis. Environ. Exp. Bot. 51 227–235. 10.1016/j.envexpbot.2003.11.002 DOI

McCormick M. K., Kettenring K. M., Baron H. M., Whigham D. F. (2010a). Extent and mechanisms of Phragmites australis spread in the Rhode River subestuary of the Chesapeake Bay, Maryland (USA). Wetlands 30 67–74. 10.1007/s13157-009-0007-0 DOI

McCormick M. K., Kettenring K. M., Baron H. M., Whigham D. F. (2010b). Spread of invasive Phragmites australis in estuaries with differing degrees of development: genetic patterns, Allee effects and interpretation. J. Ecol. 98 1369–1378. 10.1111/j.1365-2745.2010.01712.x DOI

Meadows R. E. (2006). Aboveground Competition between Native and Introduced Phragmites in Two Tidal Marsh Basins in Delaware. MS thesis, Delaware State University, Dover, DE.

Meriste M., Kirsimäe K., Freiberg L. (2012). Relative sea-level changes at shallow coasts inferred from reed bed distribution over the last 50 years in Matsalu bay, the Baltic Sea. J. Coast. Res. 28 1–10. 10.2112/JCOASTRES-D-10-00049.1 DOI

Meyerson L. A., Cronin J. T., Bhattarai G. P., Brix H., Lambertini C., Lucanova M., et al. (2016a). Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biol. Invasions 18 2531–2549. 10.1007/s10530-016-1200-8 DOI

Meyerson L. A., Cronin J. T., Pyšek P. (2016b). Phragmites australis as a model organism for studying plant invasions. Biol. Invasions 18 2421–2431. 10.1007/s10530-016-1132-3 DOI

Meyerson L. A., Lambert A. M., Saltonstall K. (2010a). A tale of three lineages: expansion of common reed (Phragmites australis) in the US Southwest and Gulf Coast. Invasive Plant Sci. Manage. 3 515–520. 10.1614/IPSM-D-09-00052.1 DOI

Meyerson L. A., Lambertini C., McCormick M. K., Whigham D. F. (2012). Hybridization of common reed in North America? The answer is blowing in the wind. AoB PLANTS 2012:pls022. 10.1093/aobpla/pls022 PubMed DOI PMC

Meyerson L. A., Saltonstall K., Windham L., Kiviat E., Findlay S. (2000). A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetl. Ecol. Manage. 8 89–103. 10.1023/A:1008432200133 DOI

Meyerson L. A., Viola D. V., Brown R. N. (2010b). Hybridization of invasive Phragmites australis with a native subspecies in North America. Biol. Invasions 12 103–111. 10.1007/s10530-009-9434-3 DOI

Milla R., Cornelissen J. H. C., van Logtestijn R. S. P., Toet S., Aerts R. (2006). Vascular plant responses to elevated CO2 in a temperate lowland Sphagnum peatland. Plant Ecol. 182 13–24. 10.1007/s11258-005-9028-9 DOI

Minchinton T. E. (2002). Precipitation during El Niño correlates with increasing spread of Phragmites australis in New England, United States, coastal marshes. Mar. Ecol. Prog. Ser. 242 305–309. 10.3354/meps242305 DOI

Mitsch W. J., Bernal B., Nahlik A. M., Mander Ü., Zhang L., Anderson C. J., et al. (2013). Wetlands, carbon, and climate change. Landsc. Ecol. 28 583–597. 10.1007/s10980-012-9758-8 DOI

Mitsch W. J., Gosselink J. G. (2007). Wetlands. Hoboken, NJ: John Wiley & Sons, Inc.

Molina-Montenegro M. A., Galleguillos C., Oses R., Acuña-Rodríguez I. S., Lavín P., Gallardo-Cerda J., et al. (2016). Adaptive phenotypic plasticity and competitive ability deployed under a climate change scenario may promote the invasion of Poa annua in Antarctica. Biol. Invasions 18 603–618. 10.1007/s10530-015-1033-x DOI

Molina-Montenegro M. A., Naya D. E. (2012). Latitudinal patterns in phenotypic plasticity and fitness-related traits: assessing the climatic variability hypothesis (CVH) with an invasive plant species. PLOS ONE 7:e47620. 10.1371/journal.pone.0047620 PubMed DOI PMC

Moore G. E., Burdick D. M., Peter C. R., Keirstead D. R. (2012). Belowground biomass of Phragmites australis in coastal marshes. Northeast. Nat. 19 611–626. 10.1656/045.019.0406 DOI

Morgan J. M. (1984). Osmoregulation and water stress in higher plants. Annu. Rev. Plant Physiol. 35 299–319. 10.1146/annurev.pp.35.060184.001503 DOI

Mozdzer T. J., Brisson J., Hazelton E. L. G. (2013). Physiological ecology and functional traits of North American native and Eurasian introduced Phragmites australis lineages. AoB PLANTS 5:plt048 10.1093/aobpla/plt048 DOI

Mozdzer T. J., Caplan J. S., Hager R. N., Proffitt C. E., Meyerson L. A. (2016a). Contrasting trait responses to latitudinal climate variation in two lineages of an invasive grass. Biol. Invasions 18 2649–2660. 10.1007/s10530-016-1218-y DOI

Mozdzer T. J., Langley J. A., Mueller P., Megonigal J. P. (2016b). Erratum to: deep rooting and global change facilitate spread of invasive grass. Biol. Invasions 18 2619–2631. 10.1007/s10530-016-1242-y DOI

Mozdzer T. J., Megonigal J. P. (2012). Jack-and-Master trait responses to elevated CO2 and N: a comparison of native and introduced Phragmites australis. PLOS ONE 7:e42794. 10.1371/journal.pone.0042794 PubMed DOI PMC

Mozdzer T. J., Megonigal J. P. (2013). Increased methane emissions by an introduced Phragmites australis lineage under global change. Wetlands 33 609–615. 10.1007/s13157-013-0417-x DOI

Mozdzer T. J., Zieman J. C. (2010). Ecophysiological differences between genetic lineages facilitate the invasion of non-native Phragmites australis in North American Atlantic coast wetlands. J. Ecol. 98 451–458. 10.1111/j.1365-2745.2009.01625.x DOI

Mozdzer T. J., Zieman J. C., McGlathery K. J. (2010). Nitrogen uptake by native and invasive temperate coastal macrophytes: importance of dissolved organic nitrogen. Estuar. Coasts 33 784–797. 10.1007/s12237-009-9254-9 DOI

Munguia-Rosas M. A., Ollerton J., Parra-Tabla V., De-Nova J. A. (2011). Meta-analysis of phenotypic selection on flowering phenology suggests that early flowering plants are favoured. Ecol. Lett. 14 511–521. 10.1111/j.1461-0248.2011.01601.x PubMed DOI

Münzbergová Z., Hadincová V. (2017). Transgenerational plasticity as an important mechanism affecting response of clonal species to changing climate. Ecol. Evol. 7 5236–5247. 10.1002/ece3.3105 PubMed DOI PMC

Münzbergová Z., Hadincová V., Skálová H., Vandvik V. (2017). Genetic differentiation and plasticity interact along temperature and precipitation gradients to determine plant performance under climate change. J. Ecol. 105 1358–1373. 10.1111/1365-2745.12762 DOI

Nada R. M., Khedr A. H. A., Serag M. S., El-Nagar N. A. (2015). Growth, photosynthesis and stress-inducible genes of Phragmites australis (Cav.) Trin. Ex Steudel from different habitats. Aquat. Bot. 124 54–62. 10.1016/j.aquabot.2015.03.007 DOI

Nakamura M., Nakamurac T., Tsuchiyaa T., Noguchi K. (2013). Functional linkage between N acquisition strategies and aeration capacities of hydrophytes for efficient oxygen consumption in roots. Physiol. Plant. 147 135–146. 10.1111/j.1399-3054.2012.01643.x PubMed DOI

Naumann J. C., Young D. R., Anderson J. E. (2007). Linking leaf chlorophyll fluorescence properties to physiological responses for detection of salt and drought stress in coastal plant species. Physiol. Plant. 131 422–433. 10.1111/j.1399-3054.2007.00973.x PubMed DOI

Nechwatal J., Wielgoss A., Mendgen K. (2008). Flooding events and rising water temperatures increase the significance of the reed pathogen Pythium phragmitis as a contributing factor in the decline of Phragmites australis. Hydrobiologia 613 109–115. 10.1007/s10750-008-9476-z DOI

Nguyen L. X., Lambertini C., Sorrell B. K., Eller F., Achenbach L., Brix H. (2013). Photosynthesis of co-existing Phragmites haplotypes in their non-native range: Are characteristics determined by adaptations derived from their native origin? AoB PLANTS 5:plt016 10.1093/aobpla/plt016 DOI

Niu S., Luo Y., Li D., Cao S., Xia J., Li J., et al. (2014). Plant growth and mortality under climatic extremes: an overview. Environ. Exp. Bot. 98 13–19. 10.1016/j.envexpbot.2013.10.004 DOI

Oney B., Reineking B., O’Neill G., Kreyling J. (2013). Intraspecific variation buffers projected climate change impacts on Pinus contorta. Ecol. Evol. 3 437–449. 10.1002/ece3.426 PubMed DOI PMC

Ostendorp W. (1989). ‘Die-back’ of reeds in Europe - a critical review of Literature. Aquatic Botany 35 5–26. 10.1016/0304-3770(89)90063-6 DOI

Ostendorp W. (1999). Susceptibility of lakeside Phragmites reeds to environmental stresses: examples from lake Constance-Untersee (SW-Germany). Limnologica 29 21–27. 10.1016/S0075-9511(99)80035-8 DOI

Ostendorp W., Dienst M. (2012). Geschichte der seeuferröhrichte in der grenzzone des Bodensee-Untersees. Mitt. Thurgauischen Naturforschungs Ges. 66 155–197.

Ostendorp W., Dienst M., Schmieder K. (2003). Disturbance and rehabilitation of lakeside Phragmites reeds following an extreme flood in Lake Constance (Germany). Hydrobiologia 506 687–695. 10.1023/B:HYDR.0000008622.60094.6d DOI

Packer J. G., Meyerson L. A., Richardson D. M., Brundu G., Allen W. J., Bhattarai G. P., et al. (2017a). Global networks for invasion science: benefits, challenges and guidelines. Biol. Invasions 19 1081–1096. 10.1007/s10530-016-1302-3 DOI

Packer J. G., Meyerson L. A., Skalova H., Pysek P., Kueffer C. (2017b). Biological flora of the British isles: Phragmites australis. J. Ecol. 105 1123–1162. 10.1111/1365-2745.12797 DOI

Packett C. R., Chambers R. M. (2006). Distribution and nutrient status of haplotypes of the marsh grass Phragmites australis along the Rappahannock River in Virginia. Estuar. Coasts 29 1222–1225. 10.1007/BF02781822 DOI

Pagter M., Bragato C., Brix H. (2005). Tolerance and physiological responses of Phragmites australis to water deficit. Aquat. Bot. 81 285–299. 10.1016/j.aquabot.2005.01.002 DOI

Pagter M., Bragato C., Malagoli M., Brix H. (2009). Osmotic and ionic effects of NaCl and Na2SO4 salinity on Phragmites australis. Aquat. Bot. 90 43–51. 10.1016/j.aquabot.2008.05.005 DOI

Pauca-Comanescu M., Clevering O. A., Hanganu J., Gridin M. (1999). Phenotypic differences among ploidy levels of Phragmites australis growing in Romania. Aquat. Bot. 64 223–234. 10.1016/S0304-3770(99)00052-2 DOI

Paul J., Kirk H., Freeland J. (2011). Genetic diversity and differentiation of fragmented reedbeds (Phragmites australis) in the United Kingdom. Hydrobiologia 665 107–115. 10.1007/s10750-011-0608-5 DOI

Pauls S. U., Nowak C., Balint M., Pfenninger M. (2013). The impact of global climate change on genetic diversity within populations and species. Mol. Ecol. 22 925–946. 10.1111/mec.12152 PubMed DOI

Poorter H., Niinemets U., Poorter L., Wright I. J., Villar R. (2009). Causes and consequences of variation in leaf mass per area (LMA): a meta-analysis. New Phytol. 182 565–588. 10.1111/j.1469-8137.2009.02830.x PubMed DOI

Post E. (2013). Ecology of Climate Change: The Importance of Biotic Interactions. Princeton, NJ: Princeton University Press.

Price A. L., Fant J. B., Larkin D. J. (2014). Ecology of native vs. introduced Phragmites australis (common reed) in Chicago-area wetlands. Wetlands 34 369–377. 10.1007/s13157-013-0504-z DOI

Pyšek P., Jarošík V., Hulme P. E., Pergl J., Hejda M., Schaffner U., et al. (2012). A global assessment of invasive plant impacts on resident species, communities and ecosystems: the interaction of impact measures, invading species’ traits and environment. Glob. Change Biol. 18 1725–1737. 10.1111/j.1365-2486.2011.02636.x DOI

Pyšek P., Pergl J., Essl F., Lenzner B., Dawson W., Kreft H., et al. (2017). Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia 89 203–274. 10.23855/preslia.2017.203 DOI

Raunkiaer C. (1893). En ny form af tagrør: Phragmites communis Trin. F. coarctata. Bot. Tidsskr. 18 274–278.

Rechav Y. (1967). Ecotypic Differentiation in Phragmites communis Trin. M.Sc. thesis, Tel-Aviv University, Tel-Aviv.

Reich P. B., Oleksyn J. (2008). Climate warming will reduce growth and survival of Scots pine except in the far north. Ecol. Lett. 11 588–597. 10.1111/j.1461-0248.2008.01172.x PubMed DOI

Rintamaki E., Aro E. M. (1985). Photosynthetic and photorespiratory enzymes in widely divergent plant-species with special reference to the moss Ceratodon purpureus - properties of ribulose bisphosphate carboxylase/oxygenase, phosphoenolpyruvate carboxylase and glycolate oxidase. J. Exp. Bot. 36 1677–1684. 10.1093/jxb/36.11.1677 DOI

Rodewald-Rudescu L. (1974). Das Schilfrohr, Phragmites communis Trinius Binnengewässer 27. Stuttgart: E. Schweizerbart, 1–302.

Rodriguez M., Brisson J. (2016). Does the combination of two plant species improve removal efficiency in treatment wetlands? Ecol. Eng. 91 302–309. 10.1016/j.ecoleng.2016.02.047 DOI

Rolletschek H., Hartzendorf T., Rolletschek A., Kohl J. G. (1999). Biometric variation in Phragmites australis affecting convective ventilation and amino acid metabolism. Aquat. Bot. 64 291–302. 10.1016/S0304-3770(99)00057-1 DOI

Romero J. A., Brix H., Comin F. A. (1999). Interactive effects of N and P on growth, nutrient allocation and NH4 uptake kinetics by Phragmites australis. Aquat. Bot. 64 369–380. 10.1016/S0304-3770(99)00064-9 DOI

Rooth J. E., Stevenson J. C., Cornwall J. C. (2003). Increased sediment accretion rates following invasion by Phragmites australis: the role of litter. Estuaries 26 475–483. 10.1007/BF02823724 DOI

Sage R. F. (2016). Tracking the evolutionary rise of C4 metabolism. J. Exp. Bot. 67 2919–2922. 10.1093/jxb/erw137 PubMed DOI PMC

Saltmarsh A., Mauchamp A., Rambal S. (2006). Contrasted effects of water limitation on leaf functions and growth of two emergent co-occurring plant species, Cladium mariscus and Phragmites australis. Aquat. Bot. 84 191–198. 10.1016/j.aquabot.2005.09.010 DOI

Saltonstall K. (2002). Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proc. Natl. Acad. Sci. U.S.A. 99 2445–2449. 10.1073/pnas.032477999 PubMed DOI PMC

Saltonstall K. (2003). Microsatellite variation within and among North American lineages of Phragmites australis. Mol. Ecol. 12 1689–1702. 10.1046/j.1365-294X.2003.01849.x PubMed DOI

Saltonstall K., Castillo H. E., Blossey B. (2014). Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. J. Am. Bot. 101 211–215. 10.3732/ajb.1300298 PubMed DOI

Saltonstall K., Lambert A. (2015). What happens in Vegas, better stay in Vegas: Phragmites australis hybrids in the Las Vegas wash. Biol. Invasions 18 2463–2474. 10.1007/s10530-016-1167-5 DOI

Saltonstall K., Stevenson J. C. (2007). The effect of nutrients on seedling growth of native and introduced Phragmites australis. Aquat. Bot. 86 331–336. 10.1016/j.aquabot.2006.12.003 DOI

Schmid S. F., Stocklin J., Hamann E., Kesselring H. (2017). High-elevation plants have reduced plasticity in flowering time in response to warming compared to low-elevation congeners. Basic Appl. Ecol. 21 1–12. 10.1016/j.baae.2017.05.003 DOI

Schöb C., Armas C., Guler M., Prieto I., Pugnaire F. I. (2013). Variability in functional traits mediates plant interactions along stress gradients. J. Ecol. 101 753–762. 10.1111/1365-2745.12062 DOI

Scholefield P. A., Doick K. J., Herbert B. M. J., Hewitt C. N. S., Schnitzler J. P., Pinelli P., et al. (2004). Impact of rising CO2 on emissions of volatile organic compounds: isoprene emission from Phragmites australis growing at elevated CO2 in a natural carbon dioxide spring Plant. Cell Environ. 27 393–401. 10.1111/j.1365-3040.2003.01155.x DOI

Sciance M. B., Patrick C. J., Weller D. E., Williams M. N., McCormick M. K., Hazelton E. L. G. (2016). Local and regional disturbances associated with the invasion of Chesapeake Bay marshes by the common reed Phragmites australis. Biol. Invasions 18 2661–2677. 10.1007/s10530-016-1136-z DOI

Sorrell B. K., Brix H., Schierup H. H., Lorenzen B. (1997). Die-back of Phragmites australis: influence on the distribution and rate of sediment methanogenesis. Biogeochemistry 36 173–188. 10.1023/A:1005761609386 DOI

Soukup A., Votrubova O., Cizkova H. (2000). Internal segmentation of rhizomes of Phragmites australis: protection of the internal aeration system against being flooded. New Phytol. 145 71–75. 10.1046/j.1469-8137.2000.00555.x DOI

Springate D. A., Kover P. X. (2014). Plant responses to elevated temperatures: a field study on phenological sensitivity and fitness responses to simulated climate warming. Glob. Change Biol. 20 456–465. 10.1111/gcb.12430 PubMed DOI PMC

Stebbins G. L. (1971). Adaptive radiation of reproductive characteristics in angiosperms, II: seeds and seedlings. Annu. Rev. Ecol. Syst. 2 237–260. 10.1146/annurev.es.02.110171.001321 DOI

Suda J., Meyerson L. A., Leitch I. J., Pyšek P. (2015). The hidden side of plant invasions: the role of genome size. New Phytol. 205 994–1007. 10.1111/nph.13107 PubMed DOI

Szczepanska W., Szczepanski A. (1976). Growth of Phragmites communis Trin, Typha latifolia L, and Typha angustifolia L in relation to the fertility of soils. Pol. Arch. Hydrobiol. 23 233–248.

Takahashi R., Nishio T., Ichizen N., Takano T. (2007). High-affinity K+ transporter PhaHAK5 is expressed only in salt-sensitive reed plants and shows Na+ permeability under NaCl stress. Plant Cell Rep. 26 1673–1679. 10.1007/s00299-007-0364-1 PubMed DOI

Tang L., Gao Y., Wang C. H., Li B., Chen J. K., Zhao B. (2013). Habitat heterogeneity influences restoration efficacy: implications of a habitat-specific management regime for an invaded marsh. Estuar. Coast. Shelf Sci. 125 20–26. 10.1016/j.ecss.2013.03.013 DOI

Tho B. T., Sorrell B. K., Lambertini C., Eller F., Brix H. (2016). Phragmites australis: how do genotypes of different phylogeographic origins differ from their invasive genotypes in growth, nitrogen allocation and gas exchange? Biol. Invasions 18 2563–2576. 10.1007/s10530-016-1158-6 DOI

Thuiller W., Lavorel S., Araujo M. B., Sykes M. T., Prentice I. C., Mooney H. A. (2005). Climate change threats to plant diversity in Europe. Proc. Natl. Acad. Sci. U.S.A. 102 8245–8250. 10.1073/pnas.0409902102 PubMed DOI PMC

Touchette B. W., Iannacone L. R., Turner G. E., Frank A. R. (2007). Drought tolerance versus drought avoidance: a comparison of plant-water relations in herbaceous wetland plants subjected to water withdrawal and repletion. Wetlands 27 656–667. 10.1672/0277-5212(2007)27[656:DTVDAA]2.0.CO;2 DOI

Trenberth K. E., Dai A., van der Schrier G., Jones P. D., Barichivich J., Briffa K. R., et al. (2014). Global warming and changes in drought. Nat. Clim. Change 4 17–22. 10.1038/nclimate2067 DOI

Tripathee R., Schäfer K. V. R. (2014). Above- and belowground biomass allocation in four dominant salt marsh species of the eastern United States. Wetlands 35 21–30. 10.1007/s13157-014-0589-z DOI

Tulbure M. G., Ghioca-Robrecht D. M., Johnston C. A., Whigham D. F. (2012). Inventory and ventilation efficiency of nonnative and native Phragmites australis (common reed) in tidal wetlands of the Chesapeake Bay. Estuar. Coasts 35 1353–1359. 10.1007/s12237-012-9529-4 DOI

Tulbure M. G., Johnston C. A. (2010). Environmental conditions promoting non-native Phragmites australis expansion in Great Lakes coastal wetlands. Wetlands 30 577–587. 10.1007/s13157-010-0054-6 DOI

Tulbure M. G., Johnston C. A., Auger D. L. (2007). Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. J. Great Lakes Res. 33 269–279. 10.3394/0380-1330(2007)33[269:RIOAGL]2.0.CO;2 DOI

Tylová E., Steinbachová L., Soukup A., Gloser V., Votrubová O. (2013). Pore water N:P and NH4+:NO3- alter the response of Phragmites australis and Glyceria maxima to extreme nutrient regimes. Hydrobiologia 700 141–155. 10.1007/s10750-012-1225-7 DOI

Tylova-Munzarova E., Bent Lorenzen B., Hans Brix H., Olga Votrubova O. (2005). The effects of NH4+ and NO3- on growth, resource allocation and nitrogen uptake kinetics of Phragmites australis and Glyceria maxima. Aquat. Bot. 81 326–342. 10.1016/j.aquabot.2005.01.006 DOI

Ulrich K. E., Burton T. M. (1985). The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns of Phragmites australis (Cav) Trin ex Steudel. Aquat. Bot. 21 53–62. 10.1016/0304-3770(85)90095-6 DOI

Valladares F., Matesanz S., Guilhaumon F., Araujo M. B., Balaguer L., Benito-Garzon M., et al. (2014). The effects of phenotypic plasticity and local adaptation on forecasts of species range shifts under climate change. Ecol. Lett. 17 1351–1364. 10.1111/ele.12348 PubMed DOI

van der Putten W. H. (1997). Die-back of Phragmites australis in European wetlands: an overview of the European research programme on reed die-back and progression (1993–1994). Aquat. Bot. 59 263–275. 10.1016/S0304-3770(97)00060-0 DOI

Van der Toorn J. (1972). Variability of Phragmites australis (Cav) Trin ex Steudel in relation to the environment. Van Zee Land 48 1–122.

van Kleunen M., Dawson W., Essl F., Pergl J., Winter M., Weber E., et al. (2015). Global exchange and accumulation of non-native plants. Nature 525 100–103. 10.1038/nature14910 PubMed DOI

Vartapetian B. B., Jackson M. B. (1997). Plant adaptations to anaerobic stress. Ann. Bot. 79 3–20. 10.1093/oxfordjournals.aob.a010303 DOI

Vasquez E. A., Glenn E. P., Brown J. J., Guntenspergen G. R., Nelson S. G. (2005). Salt tolerance underlies the cryptic invasion of North American salt marshes by an introduced haplotype of the common reed Phragmites australis (Poaceae). Mar. Ecol. Prog. Ser. 298 1–8. 10.3354/meps298001 DOI

Vasquez E. A., Glenn E. P., Guntenspergen G. R., Brown J. J., Nelson S. G. (2006). Salt tolerance and osmotic adjustment of Spartina alterniflora (Poaceae) and the invasive M haplotype of Phragmites australis (Poaceae) along a salinity gradient. Am. J. Bot. 93 1784–1790. 10.3732/ajb.93.12.1784 PubMed DOI

Vermaat J. E., Bos B., van der Burg P. (2016). Why do reed beds decline and fail to re-establish? A case study of Dutch peat lakes. Freshw. Biol. 61 1580–1589. 10.1111/fwb.12801 DOI

Vilà M., Espinar J. L., Hejda M., Hulme P. E., Jarošík V., Maron J. L., et al. (2011). Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol. Lett. 14 702–708. 10.1111/j.1461-0248.2011.01628.x PubMed DOI

Violle C., Enquist B. J., McGill B. J., Jiang L. I. N., Albert C. H., Hulshof C., et al. (2012). The return of the variance: intraspecific variability in community ecology. Trends Ecol. Evol. 27 244–252. 10.1016/j.tree.2011.11.014 PubMed DOI

Visser M. E. (2016). Phenology: interactions of climate change and species. Nature 535 236–237. 10.1038/nature18905 PubMed DOI

Vretare V., Weisner S. E. B., Strand J. A., Graneli W. (2001). Phenotypic plasticity in Phragmites australis as a functional response to water depth. Aquat. Bot. 69 127–145. 10.1016/S0304-3770(01)00134-6 DOI

Vymazal J. (2013). Emergent plants used in free water surface constructed wetlands: a review. Ecol. Eng. 61 582–592. 10.1016/j.ecoleng.2013.06.023 DOI

Wang H., Hao L., Wen J., Zhang C., Liang H. (1998). Differential expression of photosynthesis-related genes of reed ecotypes in response to drought and saline habitats. Photosynthetica 35 61–69. 10.1023/A:1006817714739 DOI

Wang W., Wang C., Sardans J., Tong C., Jia R., Zeng C., et al. (2015). Flood regime affects soil stoichiometry and the distribution of the invasive plants in subtropical estuarine wetlands in China. Catena 128 144–154. 10.1016/j.catena.2015.01.017 DOI

Weisner S. E. B., Strand J. A. (1996). Rhizome architecture in Phragmites australis in relation to water depth: implications for within-plant oxygen transport distances. Folia Geobot. 31 91–97. 10.1007/BF02803998 DOI

White S. D., Deegan B. M., Ganf G. G. (2007). The influence of water level fluctuations on the potential for convective flow in the emergent macrophytes Typha domingensis and Phragmites australis. Aquat. Bot. 86 369–376. 10.1016/j.aquabot.2007.01.006 DOI

White S. D., Ganf G. G. (2002). A comparison of the morphology, gas space anatomy and potential for internal aeration in Phragmites australis under variable and static water regimes. Aquat. Bot. 73 115–127. 10.1016/S0304-3770(02)00010-4 DOI

Whyte R. S., Trexel-Kroll D., Klarer D. M., Shields R., Francko D. A. (2008). The invasion and spread of Phragmites australis during a period of low water in a Lake Erie coastal wetland. J. Coast. Res. 55 111–120. 10.2112/SI55-19.1 DOI

Wilson E. O. (eds) (1988). “The current state of biological diversity,” in Biodiversity (Washington, DC: National Academy Press; ), 3–18.

Windham L., Meyerson L. A. (2003). Effects of common reed (Phragmites australis) expansions on nitrogen dynamics of tidal marshes of the northeastern U.S. Estuaries 26 452–464 10.1007/BF02823722 DOI

Winkel A., Pedersen O., Ella E., Ismail A. M., Colmer T. D. (2014). Gas film retention and underwater photosynthesis during field submergence of four contrasting rice genotypes. J. Exp. Bot. 65 3225–3233. 10.1093/jxb/eru166 PubMed DOI PMC

Wright J. P., Jones C. G. (2004). Predicting effects of ecosystem engineers on patch-scale species richness from primary productivity. Ecology 85 2071–2081. 10.1890/02-8018 DOI

Wu C. A., Murray L. A., Heffernan K. E. (2015). Evidence for natural hybridization between native and introduced lineages of Phragmites australis in the Chesapeake Bay watershed. Am. J. Bot. 102 805–812. 10.3732/ajb.1500018 PubMed DOI

Xiang J., Jiang A. N., Fang Y. P., Huang L. B., Zhang H. (2012). Effects of soil water gradient on stress-resistant enzyme activities in Phragmites australis from Yellow River Delta. Proc. Environ. Sci. 13 2464–2468. 10.1016/j.proenv.2012.01.236 DOI

Yamasaki S., Tange I. (1981). Growth responses of Zizania latifolia, Phragmites australis and Miscanthus sacchariflorus to varying inundation. Aquat. Bot. 10 229–239. 10.1016/0304-3770(81)90025-5 DOI

Yarwood S. A., Baldwin A. H., Mateu M. G., Buyer J. S. (2016). Archeal rhizosphere communities differ between the native and invasive lineages of the wetland plant Phragmites australis (common reed) in a Chesapeake Bay subestuary. Biol. Invasions 18 2717–2728. 10.1007/s10530-016-1144-z DOI

Yu J., Wang X., Ning K., Li Y., Wu H., Fu Y., et al. (2012). Effects of salinity and water depth on germination of Phragmites australis in coastal wetland of the Yellow River Delta. Clean Soil Air Water 40 1154–1158. 10.1002/clen.201100743 DOI

Zemlin R., Kühl H., Kohl J. G. (2000). Effects of seasonal temperature on shoot growth dynamics and shoot morphology of common reed (Phragmites australis). Wetl. Ecol. Manag. 8 447–457. 10.1023/A:1026566103296 DOI

Zhai X. (2013). Direct Optimization for Classification with Boosting. Ph.D. dissertation, Wright State University, Fairborn, OH.

Zhang G., Deng C. (2012). Gas exchange and chlorophyll fluorescence of salinity-alkalinity stressed Phragmites australis seedlings. J. Food Agric. Environ. 10 880–884.

Zhao Y. J., Qing H., Zhao C. J., Zhou C. F., Zhang W. G., Xiao Y., et al. (2010). Phenotypic plasticity of Spartina alterniflora and Phragmites australis in response to nitrogen addition and intraspecific competition. Hydrobiologia 637 143–155. 10.1007/s10750-009-9992-5 DOI

Zheng W. J., Zheng X. P., Zhang C. L. (2000). A survey of photosynthetic carbon metabolism in 4 ecotypes of Phragmites australis in northwest China: leaf anatomy, ultrastructure, and activities of ribulose 1, 5-bisphosphate carboxylase, phosphoenolpyruvate carboxylase and glycollate oxidase. Physiol. Plant. 110 201–208. 10.1034/j.1399-3054.2000.110209.x DOI

Zhu X., Chen G., Zhang C. (2001). Photosynthetic electron transport, photophosphorylation, and antioxidants in two ecotypes of reed (Phragmites communis Trin) from different habitats. Photosynthetica 39 183–189. 10.1023/A:1013766722604 DOI

Zhu X. Y., Jing Y., Chen G. C., Wang S. M., Zhang C. L. (2003a). Solute levels and osmoregulatory enzyme activities in reed plants adapted to drought and saline habitats. Plant Growth Regul. 41 165–172. 10.1023/A:1027381006811 DOI

Zhu X. Y., Wang S. M., Zhang C. L. (2003b). Composition and characteristic differences in photosynthetic membranes of two ecotypes of reed (Phragmites communis L) from different habitats. Photosynthetica 41 97–104. 10.1023/A:1025820731410 DOI

Zhu X. Y., Xia W. X., Chen L. J. (2012). Leaf anatomy and C4 photosynthetic enzymes in three reed ecotypes. Biol. Plant. 56 145–148. 10.1007/s10535-012-0031-4 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...