The hidden side of plant invasions: the role of genome size

. 2015 Feb ; 205 (3) : 994-1007. [epub] 20141017

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid25323486

The ecological role of genome size in plant biology, biogeography, and morphology has garnered increasing attention as the methods and technology associated with measuring cytological characteristics have become more reliable and accessible. However, how plant genome size influences plant invasions and at what stage in the invasion this influence occurs have been little explored. Several large-scale analyses of published data have yielded valuable interspecific comparisons, but experimental studies that manipulate environmental factors are needed, particularly below the species level, to fully understand the role that genome size plays in plant invasion. In this review, we summarize the available knowledge, discuss the integration of genome size data into invasion research, and suggest how it can be applied to detect and manage invasive species. We also explore how global climate change could exert selective pressures on plant populations with varying genome sizes, thereby increasing the distribution range and invasiveness of some populations while decreasing others. Finally, we outline avenues for future research, including considerations of large-scale studies of intraspecific variation in genome size of invasive populations, testing the interaction of genome size with other factors in macroecological analyses of invasions, as well as the role this trait may play in plant-enemy interactions.

Zobrazit více v PubMed

Antonelli A, Verola CF, Parisod C, Gustafsson ALS. 2010. Climate cooling promoted the expansion and radiation of a threatened group of South American orchids (Epidendroideae: Laeliinae). Biological Journal of the Linnean Society 100: 597-607.

Beaulieu JM, Leitch IJ, Knight CA. 2007a. Genome size evolution in relation to leaf strategy and metabolic rates revisited. Annals of Botany 99: 495-505.

Beaulieu JM, Leitch IJ, Patel S, Pendharkar A, Knight CA. 2008. Genome size is a strong predictor of cell size and stomatal density in angiosperms. New Phytologist 179: 975-986.

Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA. 2007b. Correlated evolution of genome size and seed mass. New Phytologist 173: 422-437.

te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, Pyšek P. 2012. The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany 109: 19-45.

Bennett MD. 1971. The duration of meiosis. Proceedings of the Royal Society London, Series B 178: 277-299.

Bennett MD. 1972. Nuclear DNA content and minimum generation time in herbaceous plants. Proceedings of the Royal Society London, Series B 181: 109-135.

Bennett MD, Leitch IJ. 2005. Genome size evolution in plants. In: Gregory T, ed. The evolution of the genome. San Diego, CA, USA: Elsevier, 89-162.

Bennett MD, Leitch IJ. 2011. Nuclear DNA amounts in angiosperms: targets, trends and tomorrow. Annals of Botany 107: 467-590.

Bennett MD, Leitch IJ. 2012. Plant DNA C-values database (release 6.0). [WWW document] URL http://data.kew.org/cvalues/ [accessed 15 December 2012].

Bennett MD, Leitch IJ, Hanson L. 1998. DNA amounts in two samples of angiosperm weeds. Annals of Botany 82: 121-134.

Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM. 2011. A proposed unified framework for biological invasions. Trends in Ecology and Evolution 26: 333-339.

Broz AK, Manter DK, Bowman G, Müller-Schärer H, Vivanco JM. 2009. Plant origin and ploidy influence gene expression and life cycle characteristics in an invasive weed. BMC Plant Biology 9: 33.

Cavalier-Smith T. 2005. Economy, speed and size matter: evolutionary forces driving nuclear genome miniaturization and expansion. Annals of Botany 95: 147-175.

Chambers RM, Meyerson LA, Saltonstall K. 1999. Expansion of reed into tidal wetlands of North America. Aquatic Botany 64: 261-273.

Chen GQ, Guo SL, Yin LP. 2010. Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biological Invasions 12: 1335-1348.

Cronin JT, Bhattarai G, Allen WJ, Meyerson LA. 2014. Biogeography of a plant invasion: plant-herbivore interactions. Ecology. doi: 10.1890/14-1091.1.

Daehler CC. 1998. The taxonomic distribution of invasive angiosperm plants: ecological insights and comparison to agricultural weeds. Biological Conservation 84: 167-180.

Díez CM, Gaut BS, Meca E, Scheinvar E, Montes-Hernandez S, Eguiarte LE, Tenaillon MI. 2013. Genome size variation in wild and cultivated maize along altitudinal gradients. New Phytologist 199: 264-276.

Doležel J, Greilhuber J, Lucretti S, Meister A, Lysák MA, Nardi L, Obermayer R. 1998. Plant genome size estimation by flow cytometry: inter-laboratory comparison. Annals of Botany 82(Suppl. A): 17-26.

Doležel J, Greilhuber J, Suda J. 2007a. Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols 2: 2233-2244.

Doležel J, Greilhuber J, Suda J. 2007b. Flow cytometry with plants: an overview. In: Doležel J, Greilhuber J, Suda J, eds. Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Weinheim, Germany: Wiley-VCH Verlag, 41-65.

Ellstrand NC, Schierenbeck K. 2000. Hybridization as a stimulus for the evolution of invasiveness in plants? Proceedings of the National Academy of Sciences, USA 97: 7043-7050.

Fagan WF, Lewis M, Neubert M, Aumann C, Apple J, Bishop J. 2005. When can herbivores slow or reverse the spread of an invading plant? A test case from Mount St. Helens. The American Naturalist 166: 669-685.

Galbraith DW, Harkins KR, Maddox JR, Ayres NM, Sharma DP, Firoozabady E. 1983. Rapid flow cytometric analysis of the cell cycle in intact plant tissues. Science 220: 1049-1051.

Gallagher RV, Leishman MR, Miller JT, Hui C, Richardson DM, Suda J, Trávníček P. 2011. Invasiveness in introduced Australian acacias: the role of species’ traits and genome size. Diversity and Distributions 17: 884-897.

Garcia S, Canela MÁ, Garnatje T, Mcarthur ED, Pellicer J, Sanderson SC, Vallès J. 2008. Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biological Journal of the Linnean Society 94: 631-649.

Goldblatt P, Johnson DE, eds. 1979 onwards. Index to plant chromosome numbers data base. St Louis, MI, USA: Missouri Botanical Garden.

Gregory TR. 2001. Coincidence, coevolution, or causation? DNA content, cell size, and the C-value enigma. Biological Reviews 76: 65-101.

Gregory TR. 2005. The evolution of the genome. San Diego, CA, USA: Elsevier.

Greilhuber J. 2005. Intraspecific variation in genome size in angiosperms: identifying its existence. Annals of Botany 95: 91-98.

Greilhuber J. 2008. Cytochemistry and C-values: the less-well-known world of nuclear DNA amounts. Annals of Botany 101: 791-804.

Greilhuber J, Doležel J, Lysák MA, Bennett MD. 2005. The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C-value’ to describe nuclear DNA contents. Annals of Botany 95: 255-260.

Greilhuber J, Leitch IJ. 2013. Genome size and the phenotype. In: Leitch IJ, Greilhuber J, Doležel J, Wendel JF, eds. Plant genome diversity. Volume 2: Physical structure, behaviour and evolution of plant genomes. Vienna, Austria: Springer-Verlag, 323-344.

Grime JP, Mowforth MA. 1982. Variation in genome size - an ecological interpretation. Nature 299: 151-153.

Grotkopp E, Rejmánek M, Rost TL. 2002. Toward a causal explanation of plant invasiveness: seedling growth and life-history strategies of 29 pine (Pinus) species. The American Naturalist 159: 396-419.

Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL. 2004. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705-1729.

Hahn MA, Buckley YM, Müller-Schärer H. 2012. Increased population growth rate in invasive polyploid Centaurea stoebe in a common garden. Ecology Letters 15: 947-954.

Halverson K, Heard SB, Nason JD, Stireman JO. 2008. Differential attack on diploid, tetraploid, and hexaploid Solidago altissima L. by five insect gallmakers. Oecologia 154: 755-761.

Hodgson JG, Sharafi M, Jalili A, Díaz S, Montserrat-Martí G, Palmer C, Cerabolini B, Pierce S, Hamzehee B, Asri Y et al. 2010. Stomatal vs. genome size in angiosperms: the somatic tail wagging the genomic dog? Annals of Botany 105: 573-584.

Holm LG, Pancho JV, Herberger JP. 1979. A geographical atlas of world weeds. New York, NY, USA: John Wiley & Sons.

Hulme PE. 2011. Biosecurity: the changing face of invasion biology. In: Richardson DM, ed. Fifty years of invasion ecology: the legacy of Charles Elton. Oxford, UK: Blackwell Publishing, 301-314.

Janz N, Thompson JN. 2002. Plant polyploidy and host expansion in an insect herbivore. Oecologia 130: 570-575.

Jeschke MR, Tranel PJ, Rayburn AL. 2003. DNA content analysis of smooth pigweed (Amaranthus hybridus) and tall waterhemp (A. tuberculatus): implications for hybrid detection. Weed Science 51: 1-3.

Keane RM, Crawley MJ. 2002. Exotic plant invasions and the enemy release hypothesis. Trends in Ecology and Evolution 17: 164-170.

van Kleunen M, Weber E, Fischer M. 2010. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecology Letters 13: 235-245.

Knight CA, Ackerly DD. 2002. Variation in nuclear DNA content across environmental gradients: a quantile regression analysis. Ecology Letters 5: 66-76.

Knight CA, Molinari NA, Petrov DA. 2005. The large genome constraint hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177-190.

Kolar CS, Lodge DM. 2001. Progress in invasion biology: predicting invaders. Trends in Ecology and Evolution 16: 199-204.

Kolář F, Lučanová M, Těšitel J, Loureiro J, Suda J. 2012. Glycerol-treated nuclear suspensions - an efficient preservation method for flow cytometric analysis of plant samples. Chromosome Research 20: 303-315.

Kron P, Suda J, Husband BC. 2007. Applications of flow cytometry to evolutionary and population biology. Annual Review of Ecology, Evolution and Systematics 38: 847-876.

Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81-96.

Kueffer C, Pyšek P, Richardson DM. 2013. Integrative invasion science: model systems, multi-site studies, focused meta-analysis, and invasion syndromes. New Phytologist 200: 615-633.

Kuester A, Conner JK, Culley T, Baucom RS. 2014. How weeds emerge: a taxonomic and trait-based examination using United States data. New Phytologist 202: 1055-1068.

Küster EC, Durka W, Kühn I, Klotz S. 2010. Differences in trait compositions of non-indigenous and native plants across Germany. Biological Invasions 12: 2001-2012.

Lambdon PW, Lloret F, Hulme PE. 2008. How do introduction characteristics influence the invasion success of Mediterranean alien plants? Perspectives in Plant Ecology, Evolution and Systematics 10: 143-159.

Lambertini C, Gustafsson MHG, Frydenberg J, Lissner J, Speranza M, Brix H. 2006. A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution 258: 161-182.

Lambertini C, Mendelssohn IA, Gustafsson MHG, Olesen B, Riis T, Sorrell BK, Brix H. 2012. Tracing the origin of Gulf Coast Phragmites (Poaceae): a story of long-distance dispersal and hybridization. American Journal of Botany 99: 538-551.

Lavergne S, Muenke NJ, Molofsky J. 2010. Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany 105: 109-116.

Le Roux JJ, Geerts S, Ivey P, Krauss S, Richardson DM, Suda J, Wilson JRU. 2010. Molecular systematics and ecology of invasive Kangaroo Paws in South Africa: management implications for a horticulturally important genus. Biological Invasions 12: 3989-4002.

Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.

Leitch AR, Leitch IJ, Trimmer M, Guignard MS, Woodward G. 2014. Impact of genomic diversity in river ecosystems. Trends in Plant Science 19: 361-366.

Leitch IJ, Bennett MD. 2007. Genome size and its uses: the impact of flow cytometry. In: Doležel J, Greilhuber J, Suda J, eds. Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Weinheim, Germany: Wiley-VCH Verlag, 153-176.

Leitch IJ, Chase MW, Bennett MD. 1998. Phylogenetic analysis of DNA C-values provides evidence for a small ancestral genome size in flowering plants. Annals of Botany 82(Suppl. A): 85-94.

Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, Castro S, Suda J. 2010. The use of flow cytometry in the biosystematics, ecology and population biology of homoploid plant. Preslia 82: 3-21.

Mahelka V, Suda J, Jarolímová V, Trávníček P, Krahulec F. 2005. Genome size discriminates between closely related taxa Elytrigia repens and E. intermedia (Poaceae: Triticeae) and their hybrid. Folia Geobotanica 40: 367-384.

Menendez R, Gonzalez-Megias A, Lewis OT, Shaw MR, Thomas CD. 2008. Escape from natural enemies during climate-driven range expansion: a case study. Ecological Entomology 33: 413-421.

Meyerson LA, Cronin JT. 2013. Evidence for multiple introductions of Phragmites australis to North America: detection of a new non-native haplotype. Biological Invasions 15: 2605-2608.

Meyerson LA, Lambertini C, McCormick M, Whigham D. 2012. Hybridization of common reed in North America? The answer is blowing in the wind. AoB Plants. doi: 10.1093/aobpla/pls022.

Meyerson LA, Reaser JK. 2002. A unified definition of biosecurity. Science 295: 44.

Meyerson LA, Reaser JK. 2003. Biosecurity, bioterrorism, and invasive alien species. Frontiers in Ecology and the Environment 1: 307-314.

Meyerson LA, Saltonstall K, Windham L, Kiviat E, Findlay S. 2000. A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetlands Ecology and Management 8: 89-103.

Meyerson LA, Viola D, Brown R. 2010. Hybridization of invasive Phragmites australis with a native subspecies in North America. Biological Invasions 12: 103-111.

Moodley D, Geerts S, Richardson DM, Wilson JRU. 2013. Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE 8: e75078.

Moravcová L, Pyšek P, Jarošík V, Havlíčková V, Zákravský P. 2010. Reproductive characteristics of neophytes in the Czech Republic: traits of invasive and non-invasive species. Preslia 82: 365-390.

Morgan HD, Westoby M. 2005. The relationship between nuclear DNA content and leaf strategy in seed plants. Annals of Botany 96: 1321-1330.

Morgan-Richards M, Trewick SA, Chapman HM, Krahulcová A. 2004. Interspecific hybridization among Hieracium species in New Zealand: evidence from flow cytometry. Heredity 93: 34-42.

Mowforth MA, Grime JP. 1989. Intra-population variation in nuclear DNA amount, cell size and growth rate in Poa annua L. Functional Ecology 3: 289-296.

Pandit MK, White SM, Pocock MJO. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist 203: 697-703.

Petitpierre B, Kueffer C, Broennimann O, Randin C, Daehler C, Guisan A. 2012. Climatic niche shifts are rare among terrestrial plant invaders. Science 335: 1344-1348.

Phillips ML, Murray BR, Pyšek P, Pergl J, Jarošík V, Chytrý M, Kühn I. 2010. Plants species of the Central European flora as aliens in Australia. Preslia 82: 465-482.

Pyšek P. 1998. Is there a taxonomic pattern to plant invasions? Oikos 82: 282-294.

Pyšek P, Hulme PE, Meyerson LA, Smith GF, Boatwright JS, Crouch NR, Figueiredo E, Foxcroft LC, Jarošík V, Richardson DM et al. 2013. Hitting the right target: taxonomic challenges of, and for, biological invasions. AoB Plants 5: plt042.

Pyšek P, Jarošík V, Pergl J, Randall R, Chytrý M, Kühn I, Tichý L, Danihelka J, Chrtek J, jun, Sádlo J. 2009a. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions 15: 891-903.

Pyšek P, Křivánek M, Jarošík V. 2009b. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology 90: 2734-2744.

Pyšek P, Mandák B, Francírková T, Prach K. 2001. Persistence of stout clonal herbs as invaders in the landscape: a field test of historical records. In: Brundu G, Brock J, Camarda I, Child L, Wade M, eds. Plant invasions: species ecology and ecosystem management. Leiden, the Netherlands: Backhuys Publishers, 235-244.

Pyšek P, Richardson DM. 2007. Traits associated with invasiveness in alien plants: where do we stand? In: Nentwig W, ed. Biological invasions. Berlin, Germany: Springer-Verlag, 97-125.

Rejmánek M. 1996. A theory of seed plant invasiveness: the first sketch. Biological Conservation 78: 171-181.

Rejmánek M. 2000. Invasive plants: approaches and predictions. Austral Ecology 25: 497-506.

Rejmánek M, Richardson DM, Higgins SI, Pitcairn MJ, Grotkopp E. 2005. Ecology of invasive plants: state of the art. In: Mooney HA, Mack RM, McNeely JA, Neville L, Schei P, Waage J, eds. Invasive alien species: searching for solutions. Washington, DC, USA: Island Press, 104-161.

Richardson DM, Pyšek P. 2012. Naturalization of introduced plants: ecological drivers of biogeographic patterns. New Phytologist 196: 383-396.

Richardson DM, Pyšek P, Rejmánek M, Barbour MG, Panetta FD, West CJ. 2000. Naturalization and invasion of alien plants: concepts and definitions. Diversity and Distributions 6: 93-107.

Saltonstall K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences, USA 99: 2445-2449.

Saltonstall K. 2011. Remnant native Phragmites australis maintains genetic diversity despite multiple threats. Conservation Genetics 12: 1027-1033.

Saltonstall K, Castillo HE, Blossey B. 2014. Confirmed field hybridization of native and introduced Phragmites australis (Poaceae) in North America. American Journal of Botany 101: 211-215.

Schmidt JP, Drake JM. 2011. Time since introduction, seed mass, and genome size predict successful invaders among the cultivated vascular plants of Hawaii. PLoS ONE 6: e17391.

Šmarda P, Bureš P. 2010. Understanding intraspecific variation in genome size in plants. Preslia 82: 41-61.

Šmarda P, Bureš P, Horová L. 2007. Random distribution pattern and non-adaptivity of genome size in a highly variable population of Festuca pallens. Annals of Botany 100: 141-150.

Šmarda P, Hejcman M, Březinová A, Horová L, Steigerová H, Zedek F, Bureš P, Hejcmanová P, Schellberg J. 2013. Effect of phosphorus availability on the selection of species with different ploidy levels and genome sizes in a long-term grassland fertilization experiment. New Phytologist 200: 911-921.

Stace CA. 2000. Cytology and cytogenetics as a fundamental taxonomic resource for the 20th and 21st centuries. Taxon 49: 451-477.

Suda J, Herben T. 2013. Ploidy frequencies in plants with ploidy heterogeneity: fitting a general gametic model to empirical population data. Proceedings of the Royal Society London, Series B 280: no. 20122387.

Suda J, Trávníček P. 2006. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry: new prospects for plant research. Cytometry Part A 69A: 273-280.

Suda J, Trávníček P, Mandák B, Berchová-Bímová K. 2010. Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia 82: 97-106.

Sugiyama S, Yamaguchi K, Yamada T. 2002. Intraspecific phenotypic variation associated with nuclear DNA content in Lolium perenne L. Euphytica 128: 145-151.

Těšitelová T, Jersáková J, Roy M, Kubátová B, Těšitel J, Urfus T, Trávníček P, Suda J. 2013. Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytologist 199: 1022-1033.

Thompson JN. 2009. The co-evolving web of life. The American Naturalist 173: 125-140.

Thompson JN, Cunningham BM, Segraves KA, Althoff DM, Wagner D. 1997. Plant polyploidy and insect/plant interactions. The American Naturalist 150: 730-743.

Thompson JN, Merg KF. 2008. Evolution of polyploidy and the diversification of plant-pollinator interactions. Ecology 89: 2197-2206.

Varela-Álvarez E, Garreta AG, Lluch JR, Soler NS, Serrao EA, Siguan MAR. 2012. Mediterranean species of Caulerpa are polyploid with smaller genomes in the invasive ones. PLoS ONE 7: e47728.

Vilà M, Weber E, D'Antonio CM. 2000. Conservation implications of invasion by plant hybridization. Biological Invasions 2: 207-217.

Vinogradov AE. 2003. Selfish DNA is maladaptive: evidence from the plant Red List. Trends in Genetics 19: 609-614.

Weber E. 2003. Invasive plant species of the world: a reference guide to environmental weeds. Wallingford, UK: CABI Publishing.

Williamson M. 2006. Explaining and predicting the success of invading species at different stages of invasion. Biological Invasions 8: 1561-1568.

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Plant invasion and naturalization are influenced by genome size, ecology and economic use globally

. 2024 Feb 13 ; 15 (1) : 1330. [epub] 20240213

Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass

. 2023 Aug ; 49 (7-8) : 437-450. [epub] 20230426

Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level

. 2020 Feb ; 10 (3) : 1106-1118. [epub] 20200113

Associations between genomic ancestry, genome size and capitula morphology in the invasive meadow knapweed hybrid complex (Centaurea × moncktonii) in eastern North America

. 2019 Oct ; 11 (5) : plz055. [epub] 20190823

The large genome size variation in the Hesperis clade was shaped by the prevalent proliferation of DNA repeats and rarer genome downsizing

. 2019 Aug 02 ; 124 (1) : 103-120.

Polyploid evolution: The ultimate way to grasp the nettle

. 2019 ; 14 (7) : e0218389. [epub] 20190701

Cosmopolitan Species As Models for Ecophysiological Responses to Global Change: The Common Reed Phragmites australis

. 2017 ; 8 () : 1833. [epub] 20171116

Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae)

. 2017 Apr 01 ; 119 (6) : 957-964.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace