Competition among native and invasive Phragmites australis populations: An experimental test of the effects of invasion status, genome size, and ploidy level
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
32076501
PubMed Central
PMC7029062
DOI
10.1002/ece3.5907
PII: ECE35907
Knihovny.cz E-zdroje
- Klíčová slova
- Europe, North America, common reed, genome size, intraspecific competition, native populations, plant invasion, ploidy level,
- Publikační typ
- časopisecké články MeSH
Among the traits whose relevance for plant invasions has recently been suggested are genome size (the amount of nuclear DNA) and ploidy level. So far, research on the role of genome size in invasiveness has been mostly based on indirect evidence by comparing species with different genome sizes, but how karyological traits influence competition at the intraspecific level remains unknown. We addressed these questions in a common-garden experiment evaluating the outcome of direct intraspecific competition among 20 populations of Phragmites australis, represented by clones collected in North America and Europe, and differing in their status (native and invasive), genome size (small and large), and ploidy levels (tetraploid, hexaploid, or octoploid). Each clone was planted in competition with one of the others in all possible combinations with three replicates in 45-L pots. Upon harvest, the identity of 21 shoots sampled per pot was revealed by flow cytometry and DNA analysis. Differences in performance were examined using relative proportions of shoots of each clone, ratios of their aboveground biomass, and relative yield total (RYT). The performance of the clones in competition primarily depended on the clone status (native vs. invasive). Measured in terms of shoot number or aboveground biomass, the strongest signal observed was that North American native clones always lost in competition to the other two groups. In addition, North American native clones were suppressed by European natives to a similar degree as by North American invasives. North American invasive clones had the largest average shoot biomass, but only by a limited, nonsignificant difference due to genome size. There was no effect of ploidy on competition. Since the North American invaders of European origin are able to outcompete the native North American clones, we suggest that their high competitiveness acts as an important driver in the early stages of their invasion.
Department of Agricultural and Food Sciences University of Bologna Bologna Italy
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Ecology Faculty of Science Charles University Prague Czech Republic
Department of Natural Resources Science The University of Rhode Island Kingston RI USA
Zobrazit více v PubMed
Achenbach, L. , Lambertini, C. , & Brix, H. (2012). Phenotypic traits of Phragmites australis clones are not related to ploidy level and distribution range. AoB Plants, 2012, pls017 10.1093/aobpla/pls017 PubMed DOI PMC
Bates, D. , Maechler, M. , Bolker, B. , & Walker, S. (2015). Fitting linear mixed‐effects models using lme4. Journal of Statistical Software, 67, 1–48. 10.18637/jss.v067.i01 DOI
Bittmann, E. (1953). Das Schilf (Phragmites communis Trin.) und seine Verwendung im Wasserbau. Stolzenau/Weser, Germany: Angewandte Pflanzensoziologie 7.
Bretz, F. , Hothorn, T. , & Westfall, P. (2010). Multiple comparisons using R. Boca Raton, FL: CRC Press.
Chambers, R. M. , Meyerson, L. A. , & Saltonstall, K. (1999). Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany, 64, 261–273.
Ciotir, C. , & Freeland, J. (2016). Cryptic intercontinental dispersal, commercial retailers, and the genetic diversity of native and non‐native cattails (Typha spp.) in North America. Hydrobiologia, 768, 137–150. 10.1007/s10750-015-2538-0 DOI
Cronin, J. T. , Bhattarai, G. P. , Allen, W. J. , & Meyerson, L. A. (2015). Biogeography of a plant invasion: Plant‐herbivore interactions. Ecology, 96, 1115–1127. 10.1890/14-1091.1 PubMed DOI
Daehler, C. C. (2003). Performance comparisons of co‐occurring native and alien invasive plants: Implications for conservation and restoration. Annual Review of Ecology Evolution and Systematics, 34, 183–211. 10.1146/annurev.ecolsys.34.011802.132403 DOI
Dawson, W. , Burslem, D. , & Hulme, P. E. (2011). The comparative importance of species traits and introduction characteristics in tropical plant invasions. Diversity and Distributions, 17, 1111–1121. 10.1111/j.1472-4642.2011.00796.x DOI
Dawson, W. , Moser, D. , van Kleunen, M. , Kreft, H. , Pergl, J. , Pyšek, P. , … Essl, F. (2017). Global hotspots and correlates of alien species richness across taxonomic groups. Nature Ecology and Evolution, 1, 0186 10.1038/s41559-017-0186 DOI
Divíšek, J. , Chytrý, M. , Beckage, B. , Gotelli, N. J. , Lososová, Z. , Pyšek, P. , … Molofsky, J. (2018). Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nature Communications, 9, 4631 10.1038/s41467-018-06995-4 PubMed DOI PMC
Doležel, J. , Greilhuber, J. , & Suda, J. (2007). Estimation of nuclear DNA content in plants using flow cytometry. Nature Protocols, 2, 2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Ellenberg, H. (1988). Vegetation ecology of central Europe. Cambridge, UK: Cambridge University Press.
Eller, F. , Skálová, H. , Caplan, J. S. , Bhattarai, G. P. , Burger, M. K. , Cronin, J. T. , … Brix, H. (2017). Cosmopolitan species as ecophysiological models for responses to global change: The common reed Phragmites australis . Frontiers in Plant Science, 8, 1833 10.3389/fpls.2017.01833 PubMed DOI PMC
Fox, J. , & Weisbert, S. (2018). Visualizing fit and lack of fit in complex regression models with predictor effects plots and partial residuals. Journal of Statistical Software, 87, 1–27. 10.18637/jss.v087.i09 DOI
Gallagher, R. V. , Leishman, M. R. , Miller, J. T. , Hui, C. , Richardson, D. M. , Suda, J. , & Trávníček, P. (2011). Invasiveness in introduced Australian acacias: The role of species traits and genome size. Diversity and Distributions, 17, 884–897. 10.1111/j.1472-4642.2011.00805.x DOI
Garcia, S. , Canela, M. A. , Garnatje, T. , McArthur, E. D. , Pellicer, J. , Sanderson, S. C. , & Valles, J. (2008). Evolutionary and ecological implications of genome size in the North American endemic sagebrushes and allies (Artemisia, Asteraceae). Biological Journal of the Linnean Society, 94, 631–649. 10.1111/j.1095-8312.2008.01001.x DOI
Gioria, M. , & Osborne, B. A. (2014). Resource competition in plant invasions: Emerging patterns and research needs. Frontiers in Plant Science, 5, art501 10.3389/fpls.2014.00501 PubMed DOI PMC
Goldstein, L. J. , & Suding, K. N. (2014). Applying competition theory to invasion: Resource impacts indicate invasion mechanisms in California shrublands. Biological Invasions, 16, 191–203. 10.1007/s10530-013-0513-0 DOI
Greilhuber, J. , Doležel, J. , Lysak, M. A. , & Bennett, M. D. (2005). The origin, evolution and proposed stabilization of the terms ‘genome size’ and ‘C‐value’ to describe nuclear DNA contents. Annals of Botany, 95, 255–260. 10.1093/aob/mci019 PubMed DOI PMC
Grotkopp, E. , Rejmánek, M. , & Rost, T. L. (2002). Toward a causal explanation of plant invasiveness: Seedling growth and life‐history strategies of 29 pine (Pinus) species. American Naturalist, 159, 396–419. 10.2307/3079249 PubMed DOI
Guo, W.‐Y. , Lambertini, C. , Nguyen, L. X. , Li, X. Z. , & Brix, H. (2014). Pre‐adaptation and post‐introduction evolution facilitate the invasiveness of Phragmites australis in North America. Ecology and Evolution, 4, 4567–4577. 10.1002/ece3.1286 PubMed DOI PMC
Guo, W.‐Y. , Lambertini, C. , Pyšek, P. , Meyerson, L. A. , & Brix, H. (2018). Living in two worlds: Evolutionary mechanisms act differently in the native and introduced ranges of an invasive plant. Ecology and Evolution, 8, 2440–2452. 10.1002/ece3.3869 PubMed DOI PMC
Guo, W.‐Y. , van Kleunen, M. , Winter, M. , Weigelt, P. , Stein, A. , Pierce, S. , … Pyšek, P. (2018). The role of adaptive strategies in plant naturalization. Ecology Letters, 21, 1380–1389. 10.1111/ele.13104 PubMed DOI
Hansen, D. L. , Lambertini, C. , Jampeetong, A. , & Brix, H. (2007). Clone specific differences in Phragmites australis: Effects of ploidy level and geographic origin. Aquatic Botany, 86, 269–279. 10.1016/j.aquabot.2006.11.005 DOI
Inderjit, Pergl, J. , van Kleunen, M. , Hejda, M. , Babu, C. R. , Majumdar, S. , … Pyšek, P. (2018). Naturalized alien flora of the Indian states: Biogeographic patterns, taxonomic structure and drivers of species richness. Biological Invasions, 20, 1625–1638. 10.1007/s10530-017-1622-y DOI
Knight, C. A. , Molinari, N. A. , & Petrov, D. A. (2005). The large genome constraint hypothesis: Evolution, ecology and phenotype. Annals of Botany, 95, 177–190. 10.1093/aob/mci011 PubMed DOI PMC
Kubešová, M. , Moravcová, L. , Suda, J. , Jarošík, V. , & Pyšek, P. (2010). Naturalized plants have smaller genomes than their non‐invading relatives: A flow cytometric analysis of the Czech alien flora. Preslia, 82, 81–96.
Küster, E. C. , Kühn, I. , Bruelheide, H. , & Klotz, S. (2008). Trait interactions help explain plant invasion success in the German flora. Journal of Ecology, 96, 860–868. 10.1111/j.1365-2745.2008.01406.x DOI
Lambertini, C. , Gustafsson, M. H. G. , Frydenberg, J. , Lissner, J. , Speranza, M. , & Brix, H. (2006). A phylogeographic study of the cosmopolitan genus Phragmites (Poaceae) based on AFLPs. Plant Systematics and Evolution, 258, 161–182. 10.1007/s00606-006-0412-2 DOI
Lavergne, S. , Muenke, N. J. , & Molofsky, J. (2010). Genome size reduction can trigger rapid phenotypic evolution in invasive plants. Annals of Botany, 105, 109–116. 10.1093/aob/mcp271 PubMed DOI PMC
Martinez, M. A. , Baack, E. J. , Hovick, S. M. , & Whitney, K. D. (2018). A reassessment of the genome size–invasiveness relationship in reed canarygrass (Phalaris arundinacea). Annals of Botany, 121, 1309–1318. 10.1093/aob/mcy028 PubMed DOI PMC
Meyerson, L. A. , & Cronin, J. T. (2013). Evidence for multiple introductions of Phragmites australis to North America: Detection of a new non‐native haplotype. Biological Invasions, 15, 2605–2608. 10.1007/s10530-013-0491-2 DOI
Meyerson, L. A. , Cronin, J. T. , Bhattarai, G. P. , Brix, H. , Lambertini, C. , Lučanová, M. , … Pyšek, P. (2016). Do ploidy level and nuclear genome size and latitude of origin modify the expression of Phragmites australis traits and interactions with herbivores? Biological Invasions, 18, 2531–2549. 10.1007/s10530-016-1200-8 DOI
Meyerson, L. A. , Cronin, J. T. , & Pyšek, P. (2016). Phragmites as a model organism for studying plant invasions. Biological Invasions, 18, 2421–2431. 10.1007/s10530-016-1132-3 DOI
Meyerson, L. A. , Lambert, A. M. , & Saltonstall, K. (2010). A tale of three lineages: Expansion of common reed (Phragmites australis) in the U.S. Invasive Plant Science and Management, 3, 515–520.
Meyerson, L. A. , Saltonstall, K. , & Chambers, R. M. (2009). Phragmites australis in eastern North America: A historical and ecological perspective In Silliman B. R., Grosholz E., & Bertness M. D. (Eds.), Salt marshes under global siege (pp. 57–82). Berkeley, CA: University of California Press.
Meyerson, L. A. , Saltonstall, K. , Windham, L. , Kiviat, E. , & Findlay, S. E. G. (2000). A comparison of Phragmites australis in freshwater and brackish marsh environments in North America. Wetland Ecology and Management, 8, 89–103. 10.1023/A:1008432200133 DOI
Moodley, D. , Geerts, S. , Richardson, D. M. , & Wilson, J. R. U. (2013). Different traits determine introduction, naturalization and invasion success in woody plants: Proteaceae as a test case. PLoS ONE, 9, e75078 10.1371/journal.pone.0075078 PubMed DOI PMC
Packer, J. G. , Meyerson, L. A. , Skálová, H. , Pyšek, P. , & Kueffer, C. (2017). Biological flora of the British Isles: Phragmites australis . Journal of Ecology, 105, 1123–1162. 10.1111/1365-2745.12797 DOI
Pandit, M. K. , White, S. M. , & Pocock, M. J. O. (2014). The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: A global analysis. New Phytologist, 203, 697–703. 10.1111/nph.12799 PubMed DOI
Pyšek, P. , Danihelka, J. , Sádlo, J. , Chrtek, J., Jr. , Chytrý, M. , Jarošík, V. , … Tichý, L. (2012). Catalogue of alien plants of the Czech Republic (2nd edition): Checklist update, taxonomic diversity and invasion patterns. Preslia, 84, 155–255.
Pyšek, P. , Jarošík, V. , Pergl, J. , Randall, R. , Chytrý, M. , Kühn, I. , … Sádlo, J. (2009). The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Diversity and Distributions, 15, 891–903. 10.1111/j.1472-4642.2009.00602.x DOI
Pyšek, P. , Manceur, A. M. , Alba, C. , McGregor, K. F. , Pergl, J. , Štajerová, K. , … Kühn, I. (2015). Naturalization of central European plants in North America: Species traits, habitats, propagule pressure, residence time. Ecology, 96, 762–774. 10.1890/14-1005.1 PubMed DOI
Pyšek, P. , Pergl, J. , Essl, F. , Lenzner, B. , Dawson, W. , Kreft, H. , … van Kleunen, M. (2017). Naturalized alien flora of the world: Species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia, 89, 203–274. 10.23855/preslia.2017.203 DOI
Pyšek, P. , & Richardson, D. M. (2007). Traits associated with invasiveness in alien plants: Where do we stand? In Nentwig W. (Ed.), Biological invasions (pp. 97–125). Berlin & Heidelberg, Germany: Springer‐Verlag.
Pyšek, P. , Skálová, H. , Čuda, J. , Guo, W.‐Y. , Doležal, J. , Kauzál, O. , … Meyerson, L. A. (2019). Physiology of a plant invasion: Biomass production, growth and tissue chemistry of invasive and native Phragmites australis populations. Preslia, 91, 51–77. 10.23855/preslia.2019.051 DOI
Pyšek, P. , Skálová, H. , Čuda, J. , Guo, W.‐Y. , Suda, J. , Doležal, J. , … Meyerson, L. A. (2018). Small genome separates native and invasive populations in an ecologically important cosmopolitan grass. Ecology, 99, 79–90. 10.1002/ecy.2068 PubMed DOI
R Core Team (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.
Razanajatovo, M. , Maurel, N. , Dawson, W. , Essl, F. , Kreft, H. , Pergl, J. , … van Kleunen, M. (2016). Plants capable of selfing are more likely to become naturalized. Nature Communications, 7, 13313 10.1038/ncomms13313 PubMed DOI PMC
Rejmánek, M. (1996). A theory of seed plant invasiveness: The first sketch. Biological Conservation, 78, 171–181. 10.1016/0006-3207(96)00026-2 DOI
Saltonstall, K. (2002). Cryptic invasion by a non‐native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America, 99, 2445–2449. 10.1073/pnas.032477999 PubMed DOI PMC
Saltonstall, K. (2003). Microsatellite variation within and among North American lineages of Phragmites australis . Molecular Ecology, 12, 1689–1702. 10.1046/j.1365-294X.2003.01849.x PubMed DOI
Saltonstall, K. (2011). Remnant native Phragmites australis maintains genetic diversity despite multiple threats. Conservation Genetics, 12, 1027–1033. 10.1007/s10592-011-0205-1 DOI
Schönswetter, P. , Suda, J. , Popp, P. , Weiss‐Schneeweiss, H. , & Brochmann, C. (2007). Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Molecular Phylogenetics and Evolution, 42, 92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI
Suda, J. , Meyerson, L. A. , Leitch, I. , & Pyšek, P. (2015). The hidden side of plant invasions: The role of genome size. New Phytologist, 205, 994–1007. 10.1111/nph.13107 PubMed DOI
te Beest, M. , Le Roux, J. J. , Richardson, D. M. , Brysting, A. K. , Suda, J. , Kubešová, M. , & Pyšek, P. (2012). The more the better? The role of polyploidy in facilitating plant invasions. Annals of Botany, 109, 19–45. 10.1093/aob/mcr277 PubMed DOI PMC
van Kleunen, M. , Dawson, W. , Essl, F. , Pergl, J. , Winter, M. , Weber, E. , … Pyšek, P. (2015). Global exchange and accumulation of non‐native plants. Nature, 525, 100–103. 10.1038/nature14910 PubMed DOI
van Kleunen, M. , Pyšek, P. , Dawson, W. , Essl, F. , Kreft, H. , Pergl, J. , … Winter, M. (2018). The global naturalized alien flora (GloNAF) database. Ecology, 100, e02542 10.1002/ecy.2542 PubMed DOI
van Kleunen, M. , Weber, E. , & Fischer, M. (2010). A meta‐analysis of trait differences between invasive and non‐invasive plant species. Ecology Letters, 13, 235–245. 10.1111/j.1461-0248.2009.01418.x PubMed DOI
Vilà, M. , Williamson, M. , & Lonsdale, M. (2004). Competition experiments on alien weeds with crops: Lessons for measuring plant invasion impact? Biological Invasions, 6, 59–69. 10.1023/B:BINV.0000010122.77024.8a DOI
Weigelt, A. , & Joliffe, P. (2003). Indices of plant competition. Journal of Ecology, 91, 707–720. 10.1046/j.1365-2745.2003.00805.x DOI
Zuellig, M. P. , & Thum, R. A. (2012). Multiple introductions of invasive Eurasian watermilfoil and recurrent hybridization with northern watermilfoil in North America. Journal of Aquatic Plant Management, 50, 1–19.
Metabolomic Evenness Underlies Intraspecific Differences Among Lineages of a Wetland Grass
Dryad
10.5061/dryad.stqjq2c00