Plants capable of selfing are more likely to become naturalized

. 2016 Oct 31 ; 7 () : 13313. [epub] 20161031

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid27796365

Many plant species have established self-sustaining populations outside their natural range because of human activities. Plants with selfing ability should be more likely to establish outside their historical range because they can reproduce from a single individual when mates or pollinators are not available. Here, we compile a global breeding-system database of 1,752 angiosperm species and use phylogenetic generalized linear models and path analyses to test relationships between selfing ability, life history, native range size and global naturalization status. Selfing ability is associated with annual or biennial life history and a large native range, which both positively correlate with the probability of naturalization. Path analysis suggests that a high selfing ability directly increases the number of regions where a species is naturalized. Our results provide robust evidence across flowering plants at the global scale that high selfing ability fosters alien plant naturalization both directly and indirectly.

Zobrazit více v PubMed

Lewis S. L. & Maslin M. A. Defining the anthropocene. Nature 519, 171–180 (2015). PubMed

van Kleunen M. et al.. Global exchange and accumulation of non-native plants. Nature 525, 100–103 (2015). PubMed

Reichard S. H. & White P. Horticulture as a pathway of invasive plant introductions in the United States. Bioscience 51, 103–113 (2001).

Hulme P. E. Addressing the threat to biodiversity from botanic gardens. Trends Ecol. Evol. 26, 168–174 (2011). PubMed

Hulme P. E. et al.. Grasping at the routes of biological invasions: a framework for integrating pathways into policy. J. Appl. Ecol. 45, 403–414 (2008).

Blackburn T. M. et al.. A unified classification of alien species based on the magnitude of their environmental impacts. PLoS Biol. 12, e1001850 (2014). PubMed PMC

Richardson D. M. et al.. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 6, 93–107 (2000).

Blackburn T. M. et al.. A proposed unified framework for biological invasions. Trends Ecol. Evol. 26, 333–339 (2011). PubMed

Richardson D. M. & Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 196, 383–396 (2012). PubMed

Barrett S. C. Why reproductive systems matter for the invasion biology of plants? in Fifty Years of Invasion Ecology: the Legacy of Charles Elton ed. Richardson D. M. 195–210John Wiley & Sons (2011).

Burns J. H. et al.. Greater sexual reproduction contributes to differences in demography of invasive plants and their noninvasive relatives. Ecology 94, 995–1004 (2013). PubMed

Baker H. G. Self-compatibility and establishment after long distance dispersal. Evolution 9, 347–349 (1955).

Stebbins G. L. Self fertilization and population variability in the higher plants. Am. Nat. 91, 337–354 (1957).

Pannell J. R. et al.. The scope of Baker's law. New Phytol. 208, 656–667 (2015). PubMed

Burns J. H., Ashman T.-L., Steets J. A., Harmon-Threatt A. & Knight T. M. A phylogenetically controlled analysis of the roles of reproductive traits in plant invasions. Oecologia 166, 1009–1017 (2011). PubMed

Rambuda T. D. & Johnson S. D. Breeding systems of invasive alien plants in South Africa: does Baker' s rule apply? Divers. Distrib. 10, 409–416 (2004).

van Kleunen M. & Johnson S. D. Effects of self-compatibility on the distribution range of invasive European plants in North America. Conserv. Biol. 21, 1537–1544 (2007). PubMed

Hao J. H., Qiang S., Chrobock T., van Kleunen M. & Liu Q. Q. A test of Baker's law: breeding systems of invasive species of Asteraceae in China. Biol. Invasions 13, 571–580 (2011).

Lafuma L. & Maurice S. Increase in mate availability without loss of self-incompatibility in the invasive species Senecio inaequidens (Asteraceae). Oikos 116, 201–208 (2007).

Sutherland S. What makes a weed a weed: life history traits of native and exotic plants in the USA. Oecologia 141, 24–39 (2004). PubMed

Moodley D., Geerts S., Richardson D. M. & Wilson J. R. The importance of pollinators and autonomous self-fertilisation in the early stages of plant invasions: Banksia and Hakea (Proteaceae) as case studies. Plant Biol. 18, 124–131 (2015). PubMed

Lloyd D. G. & Schoen D. J. Self-and cross-fertilization in plants. I. Functional dimensions. Int. J. Plant Sci. 153, 358–369 (1992).

Bawa K. S. Breeding systems of tree species of a lowland tropical community. Evolution 28, 85–92 (1974). PubMed

Mena-Ali J. I. & Stephenson A. G. Segregation analyses of partial self-incompatibility in self and cross progeny of Solanum carolinense reveal a leaky S-allele. Genetics 177, 501–510 (2007). PubMed PMC

Raduski A. R., Haney E. B. & Igić B. The expression of self-incompatibility in angiosperms is bimodal. Evolution 66, 1275–1283 (2012). PubMed

Baker H. G. Characteristics and Modes of Origin of Weeds in The Genetics of Colonizing Species eds Baker H. G., Stebbins G. L. 147–168Academic Press (1965).

Baker H. G. The evolution of weeds. Annu. Rev. Ecol. Syst. 5, 1–24 (1974).

Pannell J. R. & Barrett S. C. Baker's law revisited: reproductive assurance in a metapopulation. Evolution 52, 657–668 (1998). PubMed

Pyšek P. et al.. Temperate trees and shrubs as global invaders: the relationship between invasiveness and native distribution depends on biological traits. Biol. Invasions 16, 577–589 (2014).

Pyšek P. et al.. Naturalization of central European plants in North America: species traits, habitats, propagule pressure, residence time. Ecology 96, 762–774 (2015). PubMed

Grossenbacher D., Briscoe Runquist R., Goldberg E. E. & Brandvain Y. Geographic range size is predicted by plant mating system. Ecol. Lett. 18, 706–713 (2015). PubMed

Randle A. M., Slyder J. B. & Kalisz S. Can differences in autonomous selfing ability explain differences in range size among sister-taxa pairs of Collinsia (Plantaginaceae)? An extension of Baker' s Law. New Phytol. 183, 618–629 (2009). PubMed

Pyšek P. et al.. Successful invaders co-opt pollinators of native flora and accumulate insect pollinators with increasing residence time. Ecol. Monogr. 81, 277–293 (2011).

Felsenstein J. Phylogenies and the comparative method. Am. Nat. 125, 1–15 (1985). PubMed

Eckert C. G. et al.. Plant mating systems in a changing world. Trends Ecol. Evol. 25, 35–43 (2010). PubMed

Dehnen-Schmutz K., Touza J., Perrings C. & Williamson M. The horticultural trade and ornamental plant invasions in Britain. Conserv. Biol. 21, 224–231 (2007). PubMed

van Kleunen M., Manning J. C., Pasqualetto V. & Johnson S. D. Phylogenetically independent associations between autonomous self-fertilization and plant invasiveness. Am. Nat. 171, 195–201 (2008). PubMed

Busch J. W. & Delph L. F. The relative importance of reproductive assurance and automatic selection as hypotheses for the evolution of self-fertilization. Ann. Bot. 109, 553–562 (2012). PubMed PMC

Colautti R. I., Grigorovich I. A. & MacIsaac H. J. Propagule pressure: a null model for biological invasions. Biol. Invasions 9, 885–885 (2007).

Goodwillie C., Kalisz S. & Eckert C. G. The evolutionary enigma of mixed mating systems in plants: occurrence, theoretical explanations, and empirical evidence. Annu. Rev. Ecol. Evol. Syst. 36, 47–79 (2005).

Kalisz S., Vogler D. W. & Hanley K. M. Context-dependent autonomous self-fertilization yields reproductive assurance and mixed mating. Nature 430, 884–887 (2004). PubMed

Razanajatovo M., Föhr C., Fischer M., Prati D. & van Kleunen M. Non-naturalized alien plants receive fewer flower visits than naturalized and native plants in a Swiss botanical garden. Biol. Conserv. 182, 109–116 (2015).

Charlesworth D. & Charlesworth B. Inbreeding depression and its evolutionary consequences. Annu. Rev. Ecol. Syst. 18, 237–268 (1987).

Rodger J. G. & Johnson S. D. Self-pollination and inbreeding depression in Acacia dealbata: can selfing promote invasion in trees? S. Afr. J. Bot. 88, 252–259 (2013).

Rodger J. G., van Kleunen M. & Johnson S. D. Does specialized pollination impede plant invasions? Int. J. Plant Sci. 171, 382–391 (2010).

Petanidou T. et al.. Self-compatibility and plant invasiveness: comparing species in native and invasive ranges. Perspect. Plant Ecol. Evol. Syst. 14, 3–12 (2012).

Lambdon P. W., Lloret F. & Hulme P. E. How do introduction characteristics influence the invasion success of Mediterranean alien plants? Perspect. Plant Ecol. Evol. Syst. 10, 143–159 (2008).

Pyšek P., Jarošík V. & Pergl J. Alien plants introduced by different pathways differ in invasion success: unintentional introductions as a threat to natural areas. PLoS ONE 6, e24890 (2011). PubMed PMC

van Kleunen M., Dawson W. & Maurel N. Characteristics of successful alien plants. Mol. Ecol. 24, 1954–1968 (2015). PubMed

Bucharová A. & van Kleunen M. Introduction history and species characteristics partly explain naturalization success of North American woody species in Europe. J. Ecol. 97, 230–238 (2009).

Rejmánek M. A theory of seed plant invasiveness: the first sketch. Biol. Conserv. 78, 171–181 (1996).

Pyšek P. et al.. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 15, 891–903 (2009).

Moles A. T. & Westoby M. Seed size and plant strategy across the whole life cycle. Oikos 113, 91–105 (2006).

Abràmoff M. D., Magalhães P. J. & Ram S. J. Image processing with ImageJ. Biophoton. Int. 11, 36–42 (2004).

Cayuela L., Granzow-de la Cerda Í., Albuquerque F. S. & Golicher D. J. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 3, 1078–1083 (2012).

R Core Team. A Language and Environment for Statistical Computing R Foundation for Statistical Computing (2012).

Brummitt R. K., Pando F., Hollis S. & Brummitt N. World Geographical Scheme for Recording Plant Distributions International Working Group on Taxonomic Databases for Plant Sciences (TDWG) (2001).

Zanne A. E. et al.. Three keys to the radiation of angiosperms into freezing environments. Nature 506, 89–92 (2014). PubMed

Paradis E., Claude J. & Strimmer K. APE: analyses of phylogenetics and evolution in R language. Bioinformatics 20, 289–290 (2004). PubMed

Webb C. O., Ackerly D. D. & Kembel S. W. Phylocom: software for the analysis of phylogenetic community structure and trait evolution. Bioinformatics 24, 2098–2100 (2008). PubMed

Wikström N., Savolainen V. & Chase M. W. Evolution of the angiosperms: calibrating the family tree. Proc. R. Soc. Lond. B Biol. Sci. 268, 2211–2220 (2001). PubMed PMC

Felsenstein J. Comparative methods with sampling error and within-species variation: contrasts revisited and revised. Am. Nat. 171, 713–725 (2008). PubMed

Ives A. R. & Garland T. Phylogenetic logistic regression for binary dependent variables. Syst. Biol. 59, 9–26 (2010). PubMed

Ho L. S. T. & Ane C. A linear-time algorithm for Gaussian and non-Gaussian trait evolution models. Syst. Biol. 63, 397–408 (2014). PubMed

Schielzeth H. Simple means to improve the interpretability of regression coefficients. Methods Ecol. Evol. 1, 103–113 (2010).

Nakagawa S. & Schielzeth H. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods Ecol. Evol. 4, 133–142 (2013).

Freckleton R., Harvey P. & Pagel M. Phylogenetic analysis and comparative data: a test and review of evidence. Am. Nat. 160, 712–726 (2002). PubMed

Grace J. B. Structural Equation Modeling and Natural Systems Cambridge University Press (2006).

Hu L. t. & Bentler P. M. Cutoff criteria for fit indexes in covariance structure analysis: conventional criteria versus new alternatives. Struct. Equ. Modeling 6, 1–55 (1999).

Rosseel Y. lavaan: an R package for structural equation modeling. J. Stat. Softw. 48, 1–36 (2012).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...