Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30401825
PubMed Central
PMC6219509
DOI
10.1038/s41467-018-06995-4
PII: 10.1038/s41467-018-06995-4
Knihovny.cz E-zdroje
- MeSH
- druhová specificita MeSH
- ekologie MeSH
- ekosystém * MeSH
- fenotyp MeSH
- fylogeneze MeSH
- fyziologie rostlin * MeSH
- rostliny klasifikace MeSH
- vývoj rostlin MeSH
- zavlečené druhy * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
The search for traits associated with plant invasiveness has yielded contradictory results, in part because most previous studies have failed to recognize that different traits are important at different stages along the introduction-naturalization-invasion continuum. Here we show that across six different habitat types in temperate Central Europe, naturalized non-invasive species are functionally similar to native species occurring in the same habitat type, but invasive species are different as they occupy the edge of the plant functional trait space represented in each habitat. This pattern was driven mainly by the greater average height of invasive species. These results suggest that the primary determinant of successful establishment of alien species in resident plant communities is environmental filtering, which is expressed in similar trait distributions. However, to become invasive, established alien species need to be different enough to occupy novel niche space, i.e. the edge of trait space.
Department of Biology University of Vermont Burlington VT 05405 USA
Department of Botany and Zoology Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Department of Geography Masaryk University Kotlářská 2 611 37 Brno Czech Republic
Department of Plant Biology University of Vermont Burlington VT 05405 USA
Faculty of Science Department of Ecology Charles University 128 43 Praha 2 Czech Republic
Zobrazit více v PubMed
van Kleunen M, et al. Global exchange and accumulation of non-native plants. Nature. 2015;525:100. doi: 10.1038/nature14910. PubMed DOI
Pyšek P, et al. Naturalized alien flora of the world: species diversity, taxonomic and phylogenetic patterns, geographic distribution and global hotspots of plant invasion. Preslia. 2017;89:203–274. doi: 10.23855/preslia.2017.203. DOI
Seebens H, et al. No saturation in the accumulation of alien species worldwide. Nat. Commun. 2017;8:14435. doi: 10.1038/ncomms14435. PubMed DOI PMC
Andersen MC, Adams H, Hope B, Powell M. Risk assessment for invasive species. Risk. Anal. 2004;24:787–793. doi: 10.1111/j.0272-4332.2004.00478.x. PubMed DOI
McGill BJ, Enquist BJ, Weiher E, Westoby M. Rebuilding community ecology from functional traits. Trends Ecol. Evol. 2006;21:178–185. doi: 10.1016/j.tree.2006.02.002. PubMed DOI
Díaz S, et al. The global spectrum of plant form and function. Nature. 2015;529:167. doi: 10.1038/nature16489. PubMed DOI
Thompson K, Hodgson JG, Rich TCG. Native and alien invasive plants: more of the same? Ecography. 1995;18:390–402. doi: 10.1111/j.1600-0587.1995.tb00142.x. DOI
Ordonez A, Wright IJ, Olff H. Functional differences between native and alien species: a global-scale comparison. Funct. Ecol. 2010;24:1353–1361. doi: 10.1111/j.1365-2435.2010.01739.x. DOI
van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010;13:235–245. doi: 10.1111/j.1461-0248.2009.01418.x. PubMed DOI
Gallagher RV, Randall RP, Leishman MR. Trait differences between naturalized and invasive plant species independent of residence time and phylogeny. Conserv. Biol. 2015;29:360–369. doi: 10.1111/cobi.12399. PubMed DOI PMC
Keddy PA. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 1992;3:157–164. doi: 10.2307/3235676. DOI
Kraft NJB, et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015;29:592–599. doi: 10.1111/1365-2435.12345. DOI
MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 1967;101:377–385. doi: 10.1086/282505. DOI
Abrams P. The theory of limiting similarity. Annu. Rev. Ecol. Syst. 1983;14:359–376. doi: 10.1146/annurev.es.14.110183.002043. DOI
Lososová Z, et al. Alien plants invade more phylogenetically clustered community types and cause even stronger clustering. Glob. Ecol. Biogeogr. 2015;24:786–794. doi: 10.1111/geb.12317. DOI
Duncan RP, Williams PA. Darwin’s naturalization hypothesis challenged. Nature. 2002;417:608–609. doi: 10.1038/417608a. PubMed DOI
Strauss SY, Webb CO, Salamin N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA. 2006;103:5841–5845. doi: 10.1073/pnas.0508073103. PubMed DOI PMC
Bezeng BS, et al. A phylogenetic approach towards understanding the drivers of plant invasiveness on Robben Island, South Africa. Bot. J. Linn. Soc. 2013;172:142–152. doi: 10.1111/boj.12030. DOI
Daehler CC. Performance comparisons of co-occurring native and alien invasive plants: implications for conservation and restoration. Annu. Rev. Ecol. Evol. Syst. 2003;34:183–211. doi: 10.1146/annurev.ecolsys.34.011802.132403. DOI
Pyšek, P. & Richardson, D. M. in Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, Berlin, Heidelberg, 2007).
Ordonez A. Functional and phylogenetic similarity of alien plants to co-occurring natives. Ecology. 2014;95:1191–1202. doi: 10.1890/13-1002.1. PubMed DOI
Hulme Philip E., Bernard-Verdier Maud. Comparing traits of native and alien plants: Can we do better? Functional Ecology. 2017;32(1):117–125. doi: 10.1111/1365-2435.12982. DOI
Richardson DM, et al. Naturalization and invasion of alien plants: concepts and definitions. Divers. Distrib. 2000;6:93–107. doi: 10.1046/j.1472-4642.2000.00083.x. DOI
Blackburn TM, et al. A proposed unified framework for biological invasions. Trends Ecol. Evol. 2011;26:333–339. doi: 10.1016/j.tree.2011.03.023. PubMed DOI
Richardson DM, Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 2012;196:383–396. doi: 10.1111/j.1469-8137.2012.04292.x. PubMed DOI
Hamilton MA, et al. Life-history correlates of plant invasiveness at regional and continental scales. Ecol. Lett. 2005;8:1066–1074. doi: 10.1111/j.1461-0248.2005.00809.x. DOI
Pyšek P, et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 2009;15:891–903. doi: 10.1111/j.1472-4642.2009.00602.x. DOI
Chytrý M, et al. Habitat invasions by alien plants: a quantitative comparison among Mediterranean, subcontinental and oceanic regions of Europe. J. Appl. Ecol. 2008;45:448–458. doi: 10.1111/j.1365-2664.2007.01398.x. DOI
Kalusová V, Chytrý M, Peet RK, Wentworth TR. Alien species pool influences the level of habitat invasion in intercontinental exchange of alien plants. Glob. Ecol. Biogeogr. 2014;23:1366–1375. doi: 10.1111/geb.12209. DOI
Kalusová V, et al. Naturalization of European plants on other continents: the role of donor habitats. Proc. Natl Acad. Sci. USA. 2017;114:13756–13761. doi: 10.1073/pnas.1705487114. PubMed DOI PMC
Westoby M. A leaf-height-seed (LHS) plant ecology strategy scheme. Plant Soil. 1998;199:213–227. doi: 10.1023/A:1004327224729. DOI
Kleyer M, et al. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. J. Ecol. 2008;96:1266–1274. doi: 10.1111/j.1365-2745.2008.01430.x. DOI
Kattge J, et al. TRY—a global database of plant traits. Glob. Change Biol. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. DOI
Pianka ER. On r- and K-selection. Am. Nat. 1970;104:592–597. doi: 10.1086/282697. DOI
Felsenstein J. Phylogenies and the comparative method. Am. Nat. 1985;125:1–15. doi: 10.1086/284325. DOI
Revell LJ, Harmon LJ, Collar DC, Oakley T. Phylogenetic signal, evolutionary process, and rate. Syst. Biol. 2008;57:591–601. doi: 10.1080/10635150802302427. PubMed DOI
Gaudet CL, Keddy PA. A comparative approach to predicting competitive ability from plant traits. Nature. 1988;334:242–243. doi: 10.1038/334242a0. DOI
Hejda M, Pyšek P, Jarošík V. Impact of invasive plants on the species richness, diversity and composition of invaded communities. J. Ecol. 2009;97:393–403. doi: 10.1111/j.1365-2745.2009.01480.x. DOI
Rundel PW, Dickie IA, Richardson DM. Tree invasions into treeless areas: mechanisms and ecosystem processes. Biol. Invasions. 2014;16:663–675. doi: 10.1007/s10530-013-0614-9. DOI
Leishman MR, Haslehurst T, Ares A, Baruch Z. Leaf trait relationships of native and invasive plants: community- and global-scale comparisons. New Phytol. 2007;176:635–643. doi: 10.1111/j.1469-8137.2007.02189.x. PubMed DOI
Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA. 1997;94:13730–13734. doi: 10.1073/pnas.94.25.13730. PubMed DOI PMC
Wright DH. Species-energy theory: an extension of species-area theory. Oikos. 1983;41:496–506. doi: 10.2307/3544109. DOI
Funk JL, Cornwell WK. Leaf traits within communities: context may affect the mapping of traits to function. Ecology. 2013;94:1893–1897. doi: 10.1890/12-1602.1. PubMed DOI
Herben T, Klimešová J, Chytrý M. Effects of disturbance frequency and severity on plant traits: an assessment across a temperate flora. Funct. Ecol. 2018;32:799–808. doi: 10.1111/1365-2435.13011. DOI
Lake JC, Leishman MR. Invasion success of exotic plants in natural ecosystems: the role of disturbance, plant attributes and freedom from herbivores. Biol. Conserv. 2004;117:215–226. doi: 10.1016/S0006-3207(03)00294-5. DOI
Chytrý M, Rafajová M. Czech National Phytosociological Database: basic statistics of the available vegetation plot-data. Preslia. 2003;75:1–15.
Chytrý, M. Vegetace České republiky 4. Lesní a křovinná vegetace. [Vegetation of the Czech Republic 4. Forest and Scrub Vegetation] (Academia, 2013).
Pyšek P, et al. Catalogue of alien plants of the Czech Republic (2nd edition): checklist update, taxonomic diversity and invasion patterns. Preslia. 2012;84:155–255.
Richardson DM, Pyšek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geogr. 2006;30:409–431. doi: 10.1191/0309133306pp490pr. DOI
Kubát, K. et al. Klíč ke květeně České republiky [Key to the Flora of the Czech Republic] (Academia, 2002).
Penone C, et al. Imputation of missing data in life-history trait datasets: which approach performs the best? Methods Ecol. Evol. 2014;5:961–970. doi: 10.1111/2041-210X.12232. DOI
Stekhoven DJ, Bühlmann P. MissForest—non-parametric missing value imputation for mixed-type data. Bioinformatics. 2012;28:112–118. doi: 10.1093/bioinformatics/btr597. PubMed DOI
Diniz-Filho JAF, Sant’Ana CER, Bini LM. An eigenvector method for estimating phylogenetic inertia. Evolution. 1998;52:1247–1262. doi: 10.1111/j.1558-5646.1998.tb02006.x. PubMed DOI
Peres-Neto PR. A unified strategy for estimating and controlling spatial, temporal and phylogenetic autocorrelation in ecological models. Oecologia Bras. 2006;10:105–119. doi: 10.4257/oeco.2006.1001.07. DOI
Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and powerful approach to multiple testing. J. R. Stat. Soc. Ser. B Methodol. 1995;57:289–300.
Daniel, W. W. Applied Nonparametric Statistics (PWS-Kent Publ., 1990).
Cayuela L, Gotelli NJ, Colwell RK. Ecological and biogeographic null hypotheses for comparing rarefaction curves. Ecol. Monogr. 2015;85:437–455. doi: 10.1890/14-1261.1. DOI
Blomberg SP, Garland T, Ives AR. Testing for phylogenetic signal in comparative data: behavioral traits are more labile. Evolution. 2003;57:717–745. doi: 10.1111/j.0014-3820.2003.tb00285.x. PubMed DOI
Abouheif E. A method for testing the assumption of phylogenetic independence in comparative data. Evol. Ecol. Res. 1999;1:895–909.
Pavoine S, Ollier S, Pontier D, Chessel D. Testing for phylogenetic signal in phenotypic traits: new matrices of phylogenetic proximities. Theor. Popul. Biol. 2008;73:79–91. doi: 10.1016/j.tpb.2007.10.001. PubMed DOI
Münkemüller T, et al. How to measure and test phylogenetic signal. Methods Ecol. Evol. 2012;3:743–756. doi: 10.1111/j.2041-210X.2012.00196.x. DOI
Durka W, Michalski SG. Daphne: a dated phylogeny of a large European flora for phylogenetically informed ecological analyses. Ecology. 2012;93:2297–2297. doi: 10.1890/12-0743.1. DOI
Griffith DA, Peres-Neto PR. Spatial modeling in ecology: the flexibility of eigenfunction spatial analyses. Ecology. 2006;87:2603–2613. doi: 10.1890/0012-9658(2006)87[2603:SMIETF]2.0.CO;2. PubMed DOI
Diniz-Filho JAF, et al. On the selection of phylogenetic eigenvectors for ecological analyses. Ecography. 2012;35:239–249. doi: 10.1111/j.1600-0587.2011.06949.x. DOI
Jombart T, Balloux F, Dray S. adephylo: new tools for investigating the phylogenetic signal in biological traits. Bioinformatics. 2010;26:1907–1909. doi: 10.1093/bioinformatics/btq292. PubMed DOI
Dray S, Saïd S, Débias F. Spatial ordination of vegetation data using a generalization of Wartenberg’s multivariate spatial correlation. J. Veg. Sci. 2008;19:45–56. doi: 10.3170/2007-8-18312. DOI
Jombart T, Devillard S, Dufour AB, Pontier D. Revealing cryptic spatial patterns in genetic variability by a new multivariate method. Heredity. 2008;101:92–103. doi: 10.1038/hdy.2008.34. PubMed DOI
Dray S, Dufour AB. The ade4 package: implementing the duality diagram for ecologists. J. Stat. Softw. 2007;22:1–20. doi: 10.18637/jss.v022.i04. DOI
R Core Team. R: A Language and Environment for Statistical Computing. (R Foundation for Statistical Computing, 2017).
Stage dependence of Elton's biotic resistance hypothesis of biological invasions
Plant invasion and naturalization are influenced by genome size, ecology and economic use globally
Native diversity buffers against severity of non-native tree invasions
Disentangling the relationships among abundance, invasiveness and invasibility in trait space
The role of phylogenetic relatedness on alien plant success depends on the stage of invasion
A conceptual map of invasion biology: Integrating hypotheses into a consensus network