Native diversity buffers against severity of non-native tree invasions
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
PubMed
37612513
PubMed Central
PMC10533391
DOI
10.1038/s41586-023-06440-7
PII: 10.1038/s41586-023-06440-7
Knihovny.cz E-zdroje
- MeSH
- biodiverzita * MeSH
- databáze faktografické MeSH
- déšť MeSH
- fylogeneze MeSH
- lidské činnosti MeSH
- stromy * klasifikace fyziologie MeSH
- teplota MeSH
- zavlečené druhy * statistika a číselné údaje trendy MeSH
- životní prostředí * MeSH
- Publikační typ
- časopisecké články MeSH
Determining the drivers of non-native plant invasions is critical for managing native ecosystems and limiting the spread of invasive species1,2. Tree invasions in particular have been relatively overlooked, even though they have the potential to transform ecosystems and economies3,4. Here, leveraging global tree databases5-7, we explore how the phylogenetic and functional diversity of native tree communities, human pressure and the environment influence the establishment of non-native tree species and the subsequent invasion severity. We find that anthropogenic factors are key to predicting whether a location is invaded, but that invasion severity is underpinned by native diversity, with higher diversity predicting lower invasion severity. Temperature and precipitation emerge as strong predictors of invasion strategy, with non-native species invading successfully when they are similar to the native community in cold or dry extremes. Yet, despite the influence of these ecological forces in determining invasion strategy, we find evidence that these patterns can be obscured by human activity, with lower ecological signal in areas with higher proximity to shipping ports. Our global perspective of non-native tree invasion highlights that human drivers influence non-native tree presence, and that native phylogenetic and functional diversity have a critical role in the establishment and spread of subsequent invasions.
AgroParisTech UMR AMAP Cirad CNRS INRA IRD Université de Montpellier Montpellier France
AMAP University of Montpellier Montpellier France
Andes to Amazon Biodiversity Program Madre de Dios Peru
Bavarian State Institute of Forestry Freising Germany
Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russia
Center for Tropical Research Institute of the Environment and Sustainability UCLA Los Angeles CA USA
Centre for Agricultural Research in Suriname Paramaribo Suriname
Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK
Centre for Forest Research Université du Québec à Montréal Montreal Quebec Canada
Centro Agricoltura Alimenti Ambiente University of Trento San Michele All'adige Italy
Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Acre Brazil
Centro de Modelación y Monitoreo de Ecosistemas Universidad Mayor Santiago Chile
Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil
CIRAD CNRS INRAE IRD Montpellier France
Cirad UMR EcoFoG Université des Antilles Université de la Guyane Campus Agronomique Kourou France
Cirad UPR Forêts et Sociétés University of Montpellier Montpellier France
Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NC USA
Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia
Compensation International S A Ci Progress GreenLife Bogotá Colombia
CTFS ForestGEO Smithsonian Tropical Research Institute Balboa Panama
Datascientist ch Wallisellen Switzerland
Departamento de Biología Universidad de la Serena La Serena Chile
Departamento de Ciências Biológicas Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy
Department of Agriculture Food Environment and Forest University of Firenze Florence Italy
Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea
Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy
Department of Biological Sciences Boise State University Boise ID USA
Department of Biology Stanford University Stanford CA USA
Department of Biology University of Florence Florence Italy
Department of Biology University of Missouri St Louis St Louis MO USA
Department of Biology West Virginia University Morgantown WV USA
Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar India
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Crop and Forest Sciences University of Lleida Lleida Spain
Department of Ecology and Environmental Sciences Pondicherry University Puducherry India
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
Department of Environment and Development Studies United International University Dhaka Bangladesh
Department of Environment and Geography University of York York UK
Department of Environmental Sciences Central University of Jharkhand Ranchi Jharkhand India
Department of Evolutionary Anthropology Duke University Durham NC USA
Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa
Department of Forest Engineering Universidade Regional de Blumenau Blumenau Brazil
Department of Forest Resources University of Minnesota St Paul MN USA
Department of Forest Science Tokyo University of Agriculture Tokyo Japan
Department of Forestry and Environment National Polytechnic Institute Yamoussoukro Côte d'Ivoire
Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
Department of Genetics Evolution and Environment University College London London UK
Department of Geographical Sciences University of Maryland College Park MD USA
Department of Geography University College London London UK
Department of Geomatics Forest Research Institute Raszyn Poland
Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA
Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA
Department of Plant Biology Institute of Biology University of Campinas UNICAMP Campinas Brazil
Department of Plant Sciences University of Oxford Oxford UK
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia
Department of Wildlife Management College of African Wildlife Management Mweka Tanzania
Department of Zoology University of Oxford Oxford UK
Depto de Silvicultura y Conservacion de la Naturaleza Universidad de Chile Temuco Chile
Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea
Division of Forestry and Natural Resources West Virginia University Morgantown WV USA
Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Kétou Benin
Environmental Studies and Research Center University of Campinas UNICAMP Campinas Brazil
European Commission Joint Research Center Ispra Italy
Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Forestry Qingdao Agricultural University Qingdao China
Faculty of Natural Resources Management Lakehead University Thunder Bay Ontario Canada
Faculty of Science and Technology Free University of Bolzano Bolzano Italy
Field Museum of Natural Histiory Chicago IL USA
Field Museum of Natural History Chicago IL USA
Forest Ecology and Forest Management Wageningen University and Research Wageningen The Netherlands
Forest Research Institute Malaysia Kuala Lumpur Malaysia
Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia
Forestry Department Food and Agriculture Organization of the United Nations Rome Italy
Forestry Division Food and Agriculture Organization of the United Nations Rome Italy
Forestry Faculty Bauman Moscow State Technical University Mytischi Russia
Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica
Fundacion ConVida Universidad Nacional Abierta y a Distancia UNAD Medellin Colombia
Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
Geography College of Life and Environmental Sciences University of Exeter Exeter UK
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Glick Designs LLC Hadley MA USA
Global Change Research Institute CAS Brno Czech Republic
Graduate School of Agriculture Kyoto University Kyoto Japan
Guyana Forestry Commission Georgetown France
Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic
Independent Researcher Bad Aussee Austria
Institut Agronomique néo Calédonien Nouméa New Caledonia
Institute for World Forestry University of Hamburg Hamburg Germany
Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
Institute of Dendrology Polish Academy of Sciences Kórnik Poland
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Forestry Belgrade Serbia
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Institute of Plant Sciences University of Bern Bern Switzerland
Instituto de Investigaciones de la Amazonía Peruana Iquitos Peru
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Instituto Nacional de Tecnología Agropecuaria Río Gallegos Argentina
IRET Herbier National du Gabon Libreville Gabon
Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium
Iwokrama International Centre for Rainforest Conservation and Development Georgetown Guyana
Jardín Botánico de Medellín Medellin Colombia
Jardín Botánico de Missouri Pasco Peru
Joint Research Unit CTFC AGROTECNIO CERCA Solsona Spain
LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain
Manaaki Whenua Landcare Research Lincoln New Zealand
Museo de Historia Natural Noel kempff Mercado Santa Cruz Bolivia
Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Pará Brazil
National Center for Agro Meteorology Seoul South Korea
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
National Institute of Amazonian Research Manaus Brazil
Natural Science Department Universidade Regional de Blumenau Blumenau Brazil
Naturalis Biodiversity Center Leiden The Netherlands
Nicholas School of the Environment Duke University Durham NC USA
Plant Ecology and Nature Conservation Group Wageningen University Wageningen The Netherlands
Polish State Forests Coordination Center for Environmental Projects Warsaw Poland
Pontificia Universidad Católica del Ecuador Quito Ecuador
Poznań University of Life Sciences Department of Game Management and Forest Protection Poznań Poland
Proceedings of the National Academy of Sciences Washington DC USA
Quantitative Biodiversity Dynamics Betafaculty Utrecht University Utrecht The Netherlands
Queensland Herbarium Department of Environment and Science Toowong Queensland Australia
Research and Innovation Center Fondazione Edmund Mach San Michele All'adige Italy
Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological Sciences University of Bristol Bristol UK
School of Forestry and Environmental Studies Yale University New Haven CT USA
School of Geography University of Leeds Leeds UK
School of Social Sciences Western Sydney University Penrith New South Wales Australia
Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark
Siberian Federal University Krasnoyarsk Russian Federation Krasnoyarsk Russia
Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany
Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
TERRA Teach and Research Centre Gembloux Agro Bio Tech University of Liege Liege Belgium
The Forest School at The Yale School of the Environment Yale University New Haven CT USA
The Santa Fe Institute Santa Fe NM USA
Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa
Tropenbos International Wageningen The Netherlands
Tropical Biodiversity MUSE Museo delle Scienze Trento Italy
UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire
UNELLEZ Guanare Programa de Ciencias del Agro y el Mar Herbario Universitario Portuguesa Venezuela
United Nation Framework Convention on Climate Change Bonn Germany
Universidad del Tolima Ibagué Colombia
Universidad Estatal Amazónica Puyo Pastaza Ecuador
Universidad Nacional de la Amazonía Peruana Iquitos Peru
Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
Université de Lorraine AgroParisTech INRAE Silva Nancy France
Vicerrectoria de Investigacion y Postgrado Universidad de La Frontera Temuco Chile
Wageningen University and Research Wageningen The Netherlands
Warsaw University of Life Sciences Warsaw Poland
Wild Chimpanzee Foundation Liberia Office Monrovia Liberia
Zobrazit více v PubMed
Pyšek P, et al. Scientists’ warning on invasive alien species. Biol. Rev. 2020;95:1511–1534. PubMed PMC
Pejchar L, Mooney HA. Invasive species, ecosystem services and human well-being. Trends Ecol. Evol. 2009;24:497–504. PubMed
Richardson DM, Hui C, Nuñez MA, Pauchard A. Tree invasions: patterns, processes, challenges and opportunities. Biol. Invasions. 2014;16:473–481.
Richardson DM, Rejmánek M. Trees and shrubs as invasive alien species–a global review. Divers. Distrib. 2011;17:788–809.
Plants of the World Online. Royal Botanic Gardens Kewhttp://www.plantsoftheworldonline.org/ (2022).
van Kleunen M, et al. The Global Naturalized Alien Flora (GloNAF) database. Ecology. 2019;100:e02542. PubMed
Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. PubMed
Vitousek PM, D'Antonio CM, Loope LL, Rejmanek M, Westbrooks R. Introduced species: a significant component of human-caused global change. N. Z. J. Ecol. 1997;21:1–16.
Butchart SH, et al. Global biodiversity: indicators of recent declines. Science. 2010;328:1164–1168. PubMed
Early R, et al. Global threats from invasive alien species in the twenty-first century and national response capacities. Nat. Commun. 2016;7:12485. PubMed PMC
Lockwood, J. L., Hoopes, M. F. & Marchetti, M. P. Invasion Ecology 2nd edn (John Wiley & Sons, 2013).
DiTomaso JM. Invasive weeds in rangelands: species, impacts, and management. Weed Sci. 2000;48:255–265.
Simberloff D. We can eliminate invasions or live with them. Successful management projects. Biol. Invasions. 2008;11:149–157.
Mack RN, et al. Biotic invasions: causes, epidemiology, global consequences, and control. Ecol. Appl. 2000;10:689–710.
Boyd IL, Freer-Smith PH, Gilligan CA, Godfray HC. The consequence of tree pests and diseases for ecosystem services. Science. 2013;342:1235773. PubMed
Vitousek PM, D’Antonio CM, Loope LL, Westbrooks R. Biological invasions as global environmental change. Am. Sci. 1996;84:468–478.
Diagne C, et al. High and rising economic costs of biological invasions worldwide. Nature. 2021;592:571–576. PubMed
Nunez MA, et al. Exotic mammals disperse exotic fungi that promote invasion by exotic trees. PLoS ONE. 2013;8:e66832. PubMed PMC
Richardson DM, Pyšek P. Naturalization of introduced plants: ecological drivers of biogeographical patterns. New Phytol. 2012;196:383–396. PubMed
Richardson DM, Pyšek P. Plant invasions: merging the concepts of species invasiveness and community invasibility. Prog. Phys. Geog. 2006;30:409–431.
Seabloom EW, et al. Human impacts, plant invasion, and imperiled plant species in California. Ecol. Appl. 2006;16:1338–1350. PubMed
Dayton, P. K. in Proc. Colloquium on Conservation Problems in Antarctica (ed. Parker, B. C.) 81–96 (Allen Press, 1972).
Beaury EM, Finn JT, Corbin JD, Barr V, Bradley BA. Biotic resistance to invasion is ubiquitous across ecosystems of the United States. Ecol. Lett. 2020;23:476–482. PubMed
Cadotte MW, Campbell SE, Li S-P, Sodhi DS, Mandrak NE. Preadaptation and naturalization of nonnative species: Darwin’s two fundamental insights into species invasion. Annu. Rev. Plant Biol. 2018;69:661–684. PubMed
Fridley J, et al. The invasion paradox: reconciling pattern and process in species invasions. Ecology. 2007;88:3–17. PubMed
Funk JL. The physiology of invasive plants in low-resource environments. Conserv. Physiol. 2013;1:cot026. PubMed PMC
Nuñez MA, Dickie IA. Invasive belowground mutualists of woody plants. Biol. Invasions. 2014;16:645–661.
van Kleunen M, Weber E, Fischer M. A meta-analysis of trait differences between invasive and non-invasive plant species. Ecol. Lett. 2010;13:235–245. PubMed
Pyšek, P. & Richardson, D. M. in Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, 2007).
Dickie IA, et al. The emerging science of linked plant–fungal invasions. New Phytol. 2017;215:1314–1332. PubMed
Diez JM, Sullivan JJ, Hulme PE, Edwards G, Duncan RP. Darwin’s naturalization conundrum: dissecting taxonomic patterns of species invasions. Ecol. Lett. 2008;11:674–681. PubMed
Ma C, et al. Different effects of invader–native phylogenetic relatedness on invasion success and impact: a meta-analysis of Darwin’s naturalization hypothesis. Proc. R. Soc. B. 2016;283:20160663. PubMed PMC
Catford JA, Jansson R, Nilsson C. Reducing redundancy in invasion ecology by integrating hypotheses into a single theoretical framework. Divers. Distrib. 2009;15:22–40.
Levine JM, D'Antonio CM. Elton revisited: a review of evidence linking diversity and invasibility. Oikos. 1999;87:15–26.
Tilman D. Community invasibility, recruitment limitation, and grassland biodiversity. Ecology. 1997;78:81–92.
Fine PV. The invasibility of tropical forests by exotic plants. J. Trop. Ecol. 2002;18:687–705.
Elton, C. S. The Ecology of Invasion by Animals and Plants 1st edn (Methuen, 1958).
Kennedy TA, et al. Biodiversity as a barrier to ecological invasion. Nature. 2002;417:636–638. PubMed
Mungi NA, Qureshi Q, Jhala YV. Role of species richness and human impacts in resisting invasive species in tropical forests. J. Ecol. 2021;109:3308–3321.
Stohlgren TJ, Jarnevich C, Chong GW, Evangelista PH. Scale and plant invasions: a theory of biotic acceptance. Preslia. 2006;78:405–426.
Zeiter M, Stampfli A. Positive diversity–invasibility relationship in species-rich semi-natural grassland at the neighbourhood scale. Ann. Bot. 2012;110:1385–1393. PubMed PMC
Zanne AE, et al. Functional biogeography of angiosperms: life at the extremes. New Phytol. 2018;218:1697–1709. PubMed
Kraft NJ, et al. Community assembly, coexistence and the environmental filtering metaphor. Funct. Ecol. 2015;29:592–599.
Keddy PA. Assembly and response rules: two goals for predictive community ecology. J. Veg. Sci. 1992;3:157–164.
Gallien L, Carboni M, Münkemüller T. Identifying the signal of environmental filtering and competition in invasion patterns–a contest of approaches from community ecology. Methods Ecol. Evol. 2014;5:1002–1011.
Divíšek J, et al. Similarity of introduced plant species to native ones facilitates naturalization, but differences enhance invasion success. Nat. Commun. 2018;9:4631. PubMed PMC
MacArthur R, Levins R. The limiting similarity, convergence, and divergence of coexisting species. Am. Nat. 1967;101:377–385.
Park DS, Potter D. A test of Darwin’s naturalization hypothesis in the thistle tribe shows that close relatives make bad neighbors. Proc. Natl Acad. Sci. USA. 2013;110:17915–17920. PubMed PMC
Schaefer H, Hardy OJ, Silva L, Barraclough TG, Savolainen V. Testing Darwin’s naturalization hypothesis in the Azores. Ecol. Lett. 2011;14:389–396. PubMed
Darwin, C. On the Origin of Species by Means of Natural Selection, or Preservation of Favoured Races in the Struggle for Life (John Murray, 1859). PubMed PMC
Hubbell, S. P. The Unified Neutral Theory of Biodiversity and Biogeography (Princeton Univ. Press, 2001). PubMed
Pinto‐Ledezma JN, et al. Testing Darwin’s naturalization conundrum based on taxonomic, phylogenetic, and functional dimensions of vascular plants. Ecol. Monogr. 2020;90:e01420.
Theoharides KA, Dukes JS. Plant invasion across space and time: factors affecting nonindigenous species success during four stages of invasion. New Phytol. 2007;176:256–273. PubMed
Hulme PE. Trade, transport and trouble: managing invasive species pathways in an era of globalization. J. Appl. Ecol. 2009;46:10–18.
Simberloff D, Von Holle B. Postitive interactions of nonindigenous species: invasion meltdown? Biol. Invasions. 1999;1:21–23.
Pyšek P, Křivánek M, Jarošík V. Planting intensity, residence time, and species traits determine invasion success of alien woody species. Ecology. 2009;90:2734–2744. PubMed
Rejmánek M. Invasive trees and shrubs: where do they come from and what we should expect in the future? Biol. Invasions. 2014;16:483–498.
Chong KY, et al. Are terrestrial biological invasions different in the tropics? Annu. Rev. Ecol. Evol. Syst. 2021;52:291–314.
Smith JL, Perino JV. Osage orange (Maclura pomifera): history and economic uses. Econ. Bot. 1981;35:24–41.
Pyšek P, et al. The global invasion success of Central European plants is related to distribution characteristics in their native range and species traits. Divers. Distrib. 2009;15:891–903.
Svenning JC, et al. The influence of interspecific interactions on species range expansion rates. Ecography. 2014;37:1198–1209. PubMed PMC
Amarasekare P, Simon MW. Latitudinal directionality in ectotherm invasion success. Proc. R. Soc. B. 2020;287:20191411. PubMed PMC
Park DS, Feng X, Maitner BS, Ernst KC, Enquist BJ. Darwin’s naturalization conundrum can be explained by spatial scale. Proc. Natl Acad. Sci. USA. 2020;117:10904–10910. PubMed PMC
Tournadre J. Anthropogenic pressure on the open ocean: The growth of ship traffic revealed by altimeter data analysis. Geophys. Res. Lett. 2014;41:7924–7932.
de Lima RAF, et al. Making forest data fair and open. Nat. Ecol. Evol. 2022;6:656–658. PubMed
Moles AT, et al. Invasions: the trail behind, the path ahead, and a test of a disturbing idea. J. Ecol. 2012;100:116–127.
Peng S, Kinlock NL, Gurevitch J, Peng S. Correlation of native and exotic species richness: a global meta‐analysis finds no invasion paradox across scales. Ecology. 2019;100:e02552. PubMed PMC
Dickie IA, et al. Conflicting values: ecosystem services and invasive tree management. Biol. Invasions. 2014;16:705–719.
Finnoff D, Shogren JF, Leung B, Lodge D. Take a risk: preferring prevention over control of biological invaders. Ecol. Econ. 2007;62:216–222.
Bivand, R. & Piras, G. Comparing implementations of estimation methods for spatial econometrics. J. Stat. Softw. 63, 1–36 (2015).
Kalwij JM. Review of ‘The Plant List, a working list of all plant species’. J. Veg. Sci. 2012;23:998–1002.
Gorelick N, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017;202:18–27.
Beech E, Rivers M, Oldfield S, Smith PP. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. For. 2017;36:454–489.
Catford JA, Vesk PA, Richardson DM, Pyšek P. Quantifying levels of biological invasion: towards the objective classification of invaded and invasible ecosystems. Glob. Change Biol. 2012;18:44–62.
Guo Q, et al. A unified approach for quantifying invasibility and degree of invasion. Ecology. 2015;96:2613–2621. PubMed
Van Den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. PubMed
Bastin J-F, et al. The global tree restoration potential. Science. 2019;365:76–79. PubMed
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC
Stewart S, et al. Climate extreme variables generated using monthly time‐series data improve predicted distributions of plant species. Ecography. 2021;44:626–639.
Hengl T, et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. PubMed PMC
Global Ports. All Layers and Tables (GLOBAL/GlobalPorts)https://gis.wfp.org/arcgis/rest/services/GLOBAL/GlobalPorts/MapServer/layers (2021).
Global Airports. The World Bank Data Cataloghttps://datacatalog.worldbank.org/search/dataset/0038117 (2021).
Maynard DS, et al. Global relationships in tree functional traits. Nat. Commun. 2022;13:3185. PubMed PMC
Joswig JS, et al. Climatic and soil factors explain the two-dimensional spectrum of global plant trait variation. Nat. Ecol. Evol. 2022;6:36–50. PubMed PMC
Florczyk, A. J. et al. GHSL Data Package 2019: Public Release GHS P2019 (European Commission, Joint Research Centre, 2019).
Owen NR, Gumbs R, Gray CL, Faith DP. Global conservation of phylogenetic diversity captures more than just functional diversity. Nat. Commun. 2019;10:859. PubMed PMC
Mazel F, et al. Prioritizing phylogenetic diversity captures functional diversity unreliably. Nat. Commun. 2018;9:2888. PubMed PMC
Tucker CM, et al. A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol. Rev. 2017;92:698–715. PubMed PMC
Jin Y, Qian HV. PhyloMaker: an R package that can generate very large phylogenies for vascular plants. Ecography. 2019;42:1353–1359.
Strauss SY, Webb CO, Salamin N. Exotic taxa less related to native species are more invasive. Proc. Natl Acad. Sci. USA. 2006;103:5841–5845. PubMed PMC
Cazzolla Gatti R, et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA. 2022;119:e2115329119. PubMed PMC
Pyšek, P. & Richardson, D. M. in Biological Invasions (ed. Nentwig, W.) 97–125 (Springer, 2008).
Petchey OL, Gaston KJ. Functional diversity (FD), species richness and community composition. Ecol. Lett. 2002;5:402–411.
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2019;35:526–528. PubMed
Wickham H, et al. Welcome to the Tidyverse. J. Open Source Softw. 2019;4:1686.
Bittinger, K. Abdiv: Alpha and beta diversity measures. R package version 0.2.0 https://cran.r-project.org/web/packages/abdiv/index.html (2020).
Calaway, R., Analytics, R., Weston, S., Tenenbaum, D. & Calaway, M. doParallel: Foreach parallel adaptor for the ‘parallel’ package. R package version 1.0.17 https://cran.r-project.org/web/packages/doParallel/index.html (2015).
Microsoft & Weston, S. foreach: Provides foreach looping construct. R package version 1.5.1. https://CRAN.R-project.org/package=foreach (2020).
Pearse WD, et al. Pez: phylogenetics for the environmental sciences. Bioinformatics. 2015;31:2888–2890. PubMed
Breiman L. Bagging predictors. Mach. Learn. 1996;24:123–140.
Crase B, Liedloff AC, Wintle BA. A new method for dealing with residual spatial autocorrelation in species distribution models. Ecography. 2012;35:879–888.
Portier J, Gauthier S, Robitaille A, Bergeron Y. Accounting for spatial autocorrelation improves the estimation of climate, physical environment and vegetation’s effects on boreal forest’s burn rates. Landsc. Ecol. 2018;33:19–34. PubMed PMC
Bjornstad, O. N. ncf: Spatial covariance functions. R package version 1.3-2 https://cran.r-project.org/web/packages/ncf/index.html (2022).
Bivand, R. S., Pebesma, E. J., Gómez-Rubio, V. & Pebesma, E. J. Applied spatial data analysis with R (Springer, 2008).
Lundberg SM, et al. From local explanations to global understanding with explainable AI for trees. Nat. Mach. Intell. 2020;2:56–67. PubMed PMC
Lundberg, S. M. & Lee, S.-I. in Advances in Neural Information Processing Systems 30 (eds Guyon, I. et al.) (NIPS, 2017).
Wright, M. N., Wager, S. & Probst, P. Ranger: A fast implementation of random forests. R package version 0.12 (2020).
Greenwell, B. fastshap: Fast approximate Shapley values. R package version 0.0.7 https://github.com/bgreenwell/fastshap (2020).
Roberts DR, et al. Cross‐validation strategies for data with temporal, spatial, hierarchical, or phylogenetic structure. Ecography. 2017;40:913–929.
Li J. Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? PLoS ONE. 2017;12:e0183250. PubMed PMC
Platt, J. in Advances in Large Margin Classifiers, Vol. 10 (eds Smola, A. J. et al.) 61–74 (MIT Press, 1999).
Niculescu-Mizil, A. & Caruana, R. in Proc. 22nd International Conference on Machine Learning 625–632 (Association for Computing Machinery, 2005).
Meyer H, Pebesma E. Predicting into unknown space? Estimating the area of applicability of spatial prediction models. Methods Ecol. Evol. 2021;12:1620–1633.
FAO. Global Forest Resources Assessment 2020: Main Report (Food and Agriculture Organization of the United Nations, 2020).
R Core Team. R: A Language and Environment for Statistical Computing. http://www.R-project.org/ (R Foundation for Statistical Computing, 2019).
Bates, D., Maechler, M., Bolker, B. & Walker, S. Fitting linear mixed-effects models using lme4. J. Stat. Softw.10.18637/jss.v067.i01 (2015).
Kunzetsova, A., Brockhoff, P. & Christensen, R. lmerTest package: tests in linear mixed effect models. J. Stat. Softw.10.18637/jss.v082.i13 (2017).
Zeileis, A. et al. betareg: Beta regression. R package version 3.1-4 https://cran.r-project.org/web/packages/betareg/index.html (2021).
Wickham, H., Chang, W. & Wickham, M. H. ggplot2: Create elegant data visualisations using the grammar of graphics. R package version 2 https://search.r-project.org/CRAN/refmans/ggplot2/html/ggplot2-package.html (2016).