MS treatment de-escalation: review and commentary
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, přehledy
PubMed
39093335
PubMed Central
PMC11447123
DOI
10.1007/s00415-024-12584-x
PII: 10.1007/s00415-024-12584-x
Knihovny.cz E-zdroje
- Klíčová slova
- De-escalation, Disease-modifying therapies, Immunosenescence, Multiple sclerosis,
- MeSH
- imunologické faktory aplikace a dávkování MeSH
- lidé MeSH
- roztroušená skleróza * farmakoterapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- Názvy látek
- imunologické faktory MeSH
Almost all currently licensed disease-modifying therapies (DMTs) for MS treatment require prolonged if not lifelong administration. Yet, as people age, the immune system has increasingly reduced responsiveness, known as immunosenescence. Many MS DMTs reduce the responsiveness of the immune system, increasing the risks for infections and possibly cancers. As people with MS (pwMS) age, it is recognized that inflammatory MS activity declines. Several studies have addressed de-escalation of DMTs for relapsing MS under special circumstances. Here, we review evidence for de-escalating DMTs as a strategy that is particularly relevant to pwMS of older age. Treatment de-escalation can involve various strategies, such as extended or reduced dosing, switching from high-efficacy DMTs having higher risks to moderately effective DMTs with lesser risks, or treatment discontinuation. Studies have suggested that for natalizumab extended dosing maintained clinical efficacy while reducing the risk of PML. Extended interval dosing of ocrelizumab mitigated the decline of Ig levels. Retrospective and observational discontinuation studies demonstrate that age is an essential modifier of drug efficacy. Discontinuation of MS treatment in older patients has been associated with a stable disease course, while younger patients who discontinued treatment were more likely to experience new clinical activity. A recently completed 2-year randomized-controlled discontinuation study in 260 stable pwMS > 55 years found stable clinical multiple sclerosis with only a small increased risk of new MRI activity upon discontinuation. DMT de-escalation or discontinuation in MS patients older than 55 years may be non-inferior to continued treatment with immunosuppressive agents having higher health risks. However, despite several small studies, a definite conclusion about treatment de-escalation in older pwMS will require larger and longer studies. Ideally, comparison of de-escalation versus continuation versus discontinuation of DMTs should be done by prospective randomized-controlled trials enrolling sufficient numbers of subjects to allow comparisons for MS patients of both sexes within age groups, such as 55-59, 60-65, 66-69, etc. Optimally, such studies should be 3 years or longer and should incorporate testing for specific markers of immunosenescence (such as T-cell receptor excision circles) to account for differential aging of individuals.
Brain and Mind Center University of Sydney Sydney Australia
Center of Neurology Lodz Poland
Department of Neurology Heinrich Heine University Düsseldorf Germany
Department of Neurology Medical University of Vienna Vienna Austria
Department of Neurology Palacky University Olomouc Czech Republic
Department of Neurology University of Warmia and Mazury Olsztyn Poland
Zobrazit více v PubMed
McGinley MP, Goldschmidt CH, Rae-Grant AD (2021) Diagnosis and treatment of multiple sclerosis: a review. JAMA 325(8):765–779. 10.1001/jama.2020.26858 PubMed
Cree BA, Arnold DL, Fox RJ et al (2022) Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: analysis of EXPAND core and extension data up to >5 years. Mult Scler 28(10):1591–1605 PubMed PMC
Wolinsky JS, Arnold DL, Brochet B et al (2020) Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol 19(12):998–1009 PubMed
Hartung H-P, Meuth SG, Miller DM, Comi G (2021) Stopping disease-modifying therapy in relapsing and progressive multiple sclerosis. Curr Opin Neurol 34(4):598–603 PubMed
Liu Z, Liang O, Ren Y et al (2023) Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 8(1):200. 10.1038/s41392-023-01451-2 PubMed PMC
Vaughn CB, Jakimovski D, Kavak KS et al (2019) Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15:329–342 PubMed
Frischer JM, Göbel G, Berek K et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721. 10.1002/ana.24497 PubMed PMC
Tremlett H, Zhao Y, Joseph J, Devonshire V, UBCMS Clinic Neurologists (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79(12):1368–1374. 10.1136/jnnp.2008.145805 PubMed
McFaul D, Hakopian NN, Smith JB, Nielsen AS, Langer-Gould A (2021) Defining benign/burnt-out MS and discontinuing disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm 8(2):e960. 10.1212/NXI.0000000000000960et PubMed PMC
Dema M, Eixarch H, Villar LM, Montalban X, Espejo C (2021) Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 20:102893 PubMed
Amoriello R, Mariottini A, Ballerini C (2021) Immunosenescence and autoimmunity: exploiting the T-Cell receptor repertoire to investigate the impact of aging on multiple sclerosis. Front Immunol 12:799380. 10.3389/fimmu.2021.799380 PubMed PMC
Persson R, Lee S, Ulcickas Yood M, Wagner Usn Mc CM, Minton N, Niemczyk S et al (2020) Infections in patients diagnosed with multiple sclerosis: a multi-database study. Mult Scler Relat Disord 41:101982 PubMed
Knapp R, Hardtstock F, Wilke T et al (2023) Comparing the risk of serious infections in patients with and without MS: a German claims data analysis. Mult Scler Relat Disord 72:104583. 10.1016/j.msard.2023.104583 PubMed
Weinberger B (2018) Vaccines for the elderly: current use and future challenges. Immunity Ageing 15:3. 10.1186/s12979-017-0107-2 PubMed PMC
Luna G, Alping P, Burman J et al (2020) Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol 77(2):184–191. 10.1001/jamaneurol.2019.3365 PubMed PMC
Langer-Gould AM, Smith JB, Gonzales EG, Piehl F, Li BH (2023) Multiple sclerosis, disease-modifying therapies, and infections. Neurol Neuroimmunol Neuroinflamm 10(6):e200164. 10.1212/NXI.0000000000200164 PubMed PMC
Vollmer BL, Wallach AI, Corboy JR, Dubovskaya K, Alvarez E, Kister I (2020) Serious safety events in rituximab-treated multiple sclerosis and related disorders. Ann Clin Transl Neurol 7:1477–1487. 10.1002/acn3.51136 PubMed PMC
Prosperini L, Haggiag S, Tortorella C, Galgani S, Gasperini C (2021) Age-related adverse events of disease-modifying treatments for multiple sclerosis: a meta-regression. Mult Scler 27(9):1391–1402. 10.1177/1352458520964778 PubMed
Olsson T, Achiron A, Alfredsson L, Berger T, Brassat D, Chan A et al (2013) Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort. Mult Scler 19(11):1533–1538 PubMed
Stamatellos V-P, Siafis S, Papazisis G (2021) Disease-modifying agents for multiple sclerosis and the risk for reporting cancer: a disproportionality analysis using the US Food and Drug Administration adverse event reporting system database. Br J Clin Pharmacol 87(12):4769–4779. 10.1111/bcp.14916 PubMed
Alping P, Askling J, Burman J et al (2020) Cancer risk for fingolimod, natalizumab, and rituximab in multiple sclerosis patients. Ann Neurol 87(5):688–699. 10.1002/ana.25701 PubMed
Hauser SL, Kappos L, Montalban X, Craveiro L, Chognot C, Hughes R et al (2021) Safety of ocrelizumab in patients with relapsing and primary progressive multiple sclerosis. Neurology 97(16):e1546–e1559. 10.1212/WNL.0000000000012700 PubMed PMC
Leist T, Cook S, Comi G et al (2020) Long-term safety data from the cladribine tablets clinical development program in multiple sclerosis. Mult Scler Relat Disord 46:102572. 10.1016/j.msard.2020.102572 PubMed
Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B (2017) Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front Neurol 8:577. 10.3389/fneur.2017.00577 PubMed PMC
Signori A, Schiavetti I, Gallo F et al (2015) Subgroups of multiple sclerosis patients with larger treatment benefits: a meta-analysis of randomized trials. Eur J Neurol 22:960–966 PubMed
Vollmer BL, Wolf AB, Sillau S, Corboy JR, Alvarez E (2022) Evolution of disease modifying therapy benefits and risks: an argument for de-escalation as a treatment paradigm for patients with multiple sclerosis. Front Neurol 12:799138. 10.3389/fneur.2021.799138 PubMed PMC
Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM (2023) Ageing and multiple sclerosis. Lancet Neurol 22:66–77. 10.1016/S14744422(22)00184-3 PubMed
Kingwell E, Zhu F, Marrie RA (2015) High incidence and increasing prevalence of multiple sclerosis in British Columbia, Canada: findings from over two decades (1991–2010). J Neurol 262(10):2352–2363 PubMed PMC
Wallin MT et al (2019) The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 92(10):e1029–e1040. 10.1212/WNL.0000000000007035 PubMed PMC
Selmaj K, Cree BAC, Barnett M, Thompson A, Hartung HP (2024) Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol 271(1):105–115 PubMed PMC
Edan G, Comi G, Le Page E, Leray E, Rocca MA, Filippi M (2011) Mitoxantrone prior to interferon beta-1b in aggressive relapsing multiple sclerosis: a 3-year randomised trial. J Neurol Neurosurg Psychiatry 82(12):1344–1350 PubMed
Rieckmann P, Heidenreich F, Sailer M et al (2012) Treatment de-escalation after mitoxantrone therapy: results of a phase IV, multicentre, open-label, randomized study of subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis. Ther Adv Neurol Disord 5(1):3–12 PubMed PMC
Gobbi C, Meier DS, Cotton F et al (2013) Interferon beta 1b following natalizumab discontinuation: one year, randomized, prospective, pilot trial. BMC Neurol 13:101. 10.1186/1471-2377-13-101 PubMed PMC
Havla J, Gerdes LA, Meinl I et al (2011) De-escalation from natalizumab in multiple sclerosis: recurrence of disease activity despite switching to glatiramer acetate. J Neurol 258(9):1665–1669 PubMed
Butkzkueven H, Giacomini PS, Cohan S (2022) Safety of fingolimod in patients with multiple sclerosis switched from natalizumab: results from transition-a 2-year, multicenter, observational, cohort study. Brain Sci 12(2):215. 10.3390/brainsci12020215 PubMed PMC
Zhu Ch, Kalincik T, Horakova D et al (2023) Comparison between dimethyl fumarate fingolimod, and ocrelizumab after natalizumab cessation. JAMA Neurol 80(7):739–748. 10.1001/jamaneurol.2023.1542 PubMed PMC
Alping P, Frisell T, Novakova L et al (2016) Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol 79(6):950–958. 10.1002/ana.24651 PubMed
Serra Lopez-Matencio JM, Perez Garcia Y, Meca-Lallana V et al (2021) Evaluation of natalizumab pharmacokinetics and pharmacodynamics: toward individualized doses. Front Neurol 12:716548–722021 PubMed PMC
Chang I, Muralidharan KK, Campbell N, Ho P-R (2021) Modeling the efficacy of natalizumab in multiple sclerosis patients who switch from every-4-week dosing to extended-interval dosing. J Clin Pharmacol 61:339–348 PubMed PMC
Ryerson ZL, Foley J, Chang I et al (2019) Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 93(15):e1452–e1462. 10.1212/WNL.0000000000008243 PubMed PMC
Bomprezzi R, Pawate S (2014) Extended interval dosing of natalizumab: a two-center, 7-year experience. Ther Adv Neurol Disord 7(5):227–231. 10.1177/1756285614540224 PubMed PMC
Zhovtis Ryerson L, Frohman TC, Foley J et al (2016) Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(8):885–889. 10.1136/jnnp-2015-312940 PubMed
De Mercanti SF, Signori A, Cordioli C et al (2021) MRI activity and extended interval of natalizumab dosing regimen: a multicentre Italian study. J Neurol Sci 424:117385. 10.1016/j.jns.2021.117385 PubMed
Chisari CG, Grimaldi LM, Salemi G et al (2020) Clinical effectiveness of different natalizumab interval dosing schedules in a large Italian population of patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 91:1297–1303. 10.1136/jnnp-2020-323472 PubMed
Butzkueven H, Kappos L, Spelman T et al (2021) No evidence for loss of natalizumab effectiveness with every-6-week dosing: A propensity score-matched comparison with every-4-week dosing in patients enrolled in the tysabri observational program (TOP). Ther Adv Neurol Disord 14:17562864211042458. 10.1177/17562864211042458 PubMed PMC
Ryerson ZL, Naismith RT, Krupp LB et al (2022) No difference in radiologic outcomes for natalizumab patients treated with extended interval dosing compared with standard interval dosing: Real-world evidence from MS PATHS. Mult Scler Relat Disord 58:103480. 10.1016/j.msard.2021.103480 PubMed
Foley JF, Defer G, Zhovtis Ryerson L et al (2022) Comparison of switching to 6-week dosing of natalizumab versus continuing with 4-week dosing in patients with relapsing–remitting multiple sclerosis (NOVA): a randomised, controlled, open-label, phase 3b trial. Lancet Neurol 21(7):608–619. 10.1016/S1474-4422(22)00143-0 PubMed
Ryerson ZL, Foley JF, Defer G et al (2023) Exploratory clinical efficacy and patient-reported outcomes from NOVA: a randomized controlled study of intravenous natalizumab 6-week dosing versus continued 4-week dosing for relapsing–remitting multiple sclerosis. Mult Scler Relat Disord 72:104561. 10.1016/j.msard.2023.104561 PubMed
Valentino P, Malucchi S, Martire S, Bava CI, Capobianco MA, Bertolotto A (2022) sNFL applicability as additional monitoring tool in natalizumab extended interval dosing regimen for RRMS patients. Mult Scler Relat Disord 67:104176. 10.1016/j.msard.2022 PubMed
Rolfes L, Pawlitzki M, Pfeuffer S et al (2021) Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neurol Neuroimmunol Neuroinflamm 8:e1035. 10.1212/NXI.0000000000001035 PubMed PMC
Sahi NK, Ali Abidi SM, Salim O, Abraham R, Kalra S, Al-Araji A (2021) Clinical impact of Ocrelizumab extended interval dosing during the COVID-19 pandemic and associations with CD19+B-cell repopulation. Mult Scler Relat Disord 56:103287. 10.1016/j.msard.2021.103287 PubMed PMC
Guerrieri S, Bucca C, Nozzolillo A et al (2023) Ocrelizumab extended-interval dosing in multiple sclerosis during SARS-CoV-2 pandemic: a real-world experience. Eur J Neurol 30(9):2859–2864. 10.1111/ene.15891 PubMed
Rjeily NB, Fitzgerald KC, Mowry EM (2024) Extended interval dosing of ocrelizumab in patients with multiple sclerosis is not associated with meaningful differences in disease activity. Mult Scler J 30:257–260. 10.1177/13524585231208311 PubMed
Baker D, Pryce G, James LK, Marta M, Schmierer K (2020) The ocrelizumab phase II extension trial suggests the potential to improve the risk: benefit balance in multiple sclerosis. Mult Scler Relat Disord 44:102279. 10.1016/j.msard.2020.102279 PubMed
Schuckmann A, Steffen F, Zipp F, Bittner S, Pape K (2023) Impact of extended interval dosing of ocrelizumab on immunoglobulin levels in multiple sclerosis. Medicine 4(6):361-372.e3. 10.1016/j.medj.2023.05.001 PubMed
Rodriguez-Mogeda C, van Lierop ZYGJ, van der Pol SMA et al (2023) Extended interval dosing of ocrelizumab modifies the repopulation of B cells without altering the clinical efficacy in multiple sclerosis. J Neuroinflamm 20(1):215. 10.1186/s12974-023-02900-z PubMed PMC
Rempe T, Elfasi A, Rodriguez E, Vasquez M, Graves J, Kinkel R (2023) Ocrelizumab B-cell repopulation-guided extended interval dosing versus standard dosing—similar clinical efficacy with decreased immunoglobulin M deficiency rates. Mult Scler Relat Disord 79:105028. 10.1016/j.msard.2023.105028 PubMed
Starvaggi Cucuzza C, Longinetti E, Ruffin N et al (2022) Sustained low relapse rate with highly variable B-cell repopulation dynamics with extended rituximab dosing intervals in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 10(1):e200056 PubMed PMC
Yamout BI, Zeineddine MM, Sawaya RA, Khoury SJ (2015) Safety and efficacy of reduced fingolimod dosage treatment. J Neuroimmunol 285:13–15. 10.1016/j.jneuroim.2015.05.012 PubMed
Ramos-Lopes J, Batista S, Barradas P et al (2021) Clinical effectiveness of reduced fingolimod dose in relapsing–remitting multiple sclerosis-a Portuguese cohort. Neurol Sci 42(3):1039–1043. 10.1007/s10072-020-04629-6 PubMed
Cree BAC, Goldman MD, Corboy JR, Singer BA, Fox EJ, Arnold DL, Ford C, Weinstock-Guttman B, Bar-Or A, Mientus S, Sienkiewicz D, Zhang Y, Karan R, Tenenbaum N (2020) Efficacy and safety of 2 fingolimod doses vs glatiramer acetate for the treatment of patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA Neurol 78(1):1–13. 10.1001/jamaneurol.2020.2950 PubMed PMC
Phillips JT, Agrella S, Fox RJ (2017) Dimethyl fumarate a review of efficacy and practical management strategies for common adverse events in patients with multiple sclerosis. Int J MS Care 19:74–83. 10.7224/1537-2073.2015-086 PubMed PMC
Kelly H, Vishnevetsky A, Chibnik LB, Levy M (2023) Hypogammaglobulinemia secondary to B-cell depleting therapies in neuroimmunology: comparing management strategies. Mult Scler J Exp Transl Clin. 10.1177/20552173231182534 PubMed PMC
Disanto G, Ripellino P, Riccitelli GC, Sacco R, Scotti B, Fucili A, Pravatà E, Kuhle J, Gobbi C, Zecca C (2021) De-escalating rituximab dose results in stability of clinical, radiological, and serum neurofilament levels in multiple sclerosis. Mult Scler 27(8):1230–1239. 10.1177/1352458520952036 PubMed
Birnbaum G (2017) Stopping disease-modifying therapy in nonrelapsing multiple sclerosis: experience from a clinicalpractice. Int J MS Care 19(1):11–14. 10.7224/1537-2073.2015-032 PubMed PMC
Bsteh G, Feige J, Ehling R et al (2017) Discontinuation of disease-modifying therapies in multiple sclerosis—clinical outcome and prognostic factors. Mult Scler 23(9):1241–1248. 10.1177/1352458516675751 PubMed
Hua LH, Fan TH, Conway D, Thompson N, Kinzy TG (2019) Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult Scler 25(5):699–708. 10.1177/1352458518765656 PubMed
Kaminsky AL, Omorou AY, Soudant M et al (2020) Discontinuation of disease-modifying treatments for multiple sclerosis in patients aged over 50 with disease inactivity. J Neurol 267(12):3518–3527. 10.1007/s00415-020-10029-9 PubMed
Bonenfant J, Bajeux E, Deburghgraeve V, Le Page E, Edan G, Kerbrat A (2017) Can we stop immunomodulatory treatments in secondary progressive multiple sclerosis? Eur J Neurol 24(2):237–244. 10.1111/ene.13181 PubMed
Yano H, Gonzalez C, Healy BC, Glanz BI, Weiner HL, Chitnis T (2019) Discontinuation of disease-modifying therapy for patients with relapsing–remitting multiple sclerosis: effect on clinical and MRI outcomes. Mult Scler Relat Disord 35:119–127. 10.1016/j.msard.2019.07.021 PubMed
Jakimovski D, Kavak KS, Vaughn CB et al (2022) Discontinuation of disease modifying therapies is associated with disability progression regardless of prior stable disease and age. Mult Scler Relat Disord 57:103406. 10.1016/j.msard.2021.103406 PubMed
Siger M, Durko A, Nicpan A, Konarska M, Grudziecka M, Selmaj K (2011) Discontinuation of interferon beta therapy in multiple sclerosis patients with high pre-treatment disease activity leads to prompt return to previous disease activity. J Neurol Sci 303(1–2):50–52. 10.1016/j.jns.2011.01.016 PubMed
Kister I, Spelman T, Patti F et al (2018) Predictors of relapse and disability progression in MS patients who discontinue disease-modifying therapy. J Neurol Sci 391:72–76. 10.1016/j.jns.2018.06.001 PubMed
Chappuis M, Rousseau C, Bajeux E et al (2023) Discontinuation of second- versus first-line disease-modifying treatment in middle-aged patients with multiple sclerosis. J Neurol 270(1):413–422. 10.1007/s00415-022-11341-2 PubMed
Coerver E, Fung WH, De Beukelaar J et al. Discontinuation of first-line disease-modifying therapy in stable multiple sclerosis (DOT-MS): an early-terminated multicenter randomized controlled trail. In: 9th Joint Ectrims-Actrims meeting, Milano 11–13 Oct 2023, Abstract 1281/O099
Corboy JR, Fox RJ, Kister I et al (2023) Risk of new disease activity in patients with multiple sclerosis who continue or discontinue disease-modifying therapies (DISCOMS): a multicentre, randomised, single-blind, phase 4, non-inferiority trial. Lancet Neurol 22(7):568–577. 10.1016/S1474-4422(23)00154-0 PubMed
Jouvenot G, Courbon G, Lefort M et al (2024) High-efficacy therapy discontinuation vs continuation in patients 50 years and older with nonactive MS. JAMA Neurol. 10.1001/jamaneurol.2024.0395 PubMed PMC
Wandall-Holm MF, Holm RP, Heick A, Langkilde AR, Magyari M (2024) Risk of T2 lesions when discontinuing fingolimod: a nationwide predictive and comparative study. Brain Commun 6(1):fcad358. 10.1093/braincomms/fcad358 PubMed PMC
Prosperini L, Haggiag S, Ruggieri S, Tortorella C, Gasperini C (2023) Stopping disease-modifying treatments in multiple sclerosis: a systematic review and meta-analysis of real-world studies. CNS Drugs 37(10):915–927. 10.1007/s40263-023-01038-z PubMed
Bsteh G, Hegen H, Riedl K et al (2021) Quantifying the risk of disease reactivation after interferon and glatiramer acetate discontinuation in multiple sclerosis: the VIAADISC score. Eur J Neurol 28(5):1609–1616. 10.1111/ene.14705 PubMed PMC
Bose G, Healy BC, Saxena S et al (2023) Increasing neurofilament and glial fibrillary acidic protein after treatment discontinuation predicts multiple sclerosis disease activity. Neurol Neuroimmunol Neuroinflamm. 10(6):e200167. 10.1212/NXI.0000000000200167 PubMed PMC
Fox RJ, Cree BAC, de Sèze J, Gold R, Hartung HP, Jeffery D, Kappos L, Montalban X, Weinstock-Guttman B, Singh CM, Altincatal A, Belviso N, Avila RL, Ho PR, Su R, Engle R, Sangurdekar D, de Moor C, Fisher E, Kieseier BC, Rudick RA (2024) Temporal relationship between serum neurofilament light chain and radiologic disease activity in patients with multiple sclerosis. Neurology 102(9):e209357. 10.1212/WNL.0000000000209357 PubMed PMC