MS treatment de-escalation: review and commentary

. 2024 Oct ; 271 (10) : 6426-6438. [epub] 20240802

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid39093335
Odkazy

PubMed 39093335
PubMed Central PMC11447123
DOI 10.1007/s00415-024-12584-x
PII: 10.1007/s00415-024-12584-x
Knihovny.cz E-zdroje

Almost all currently licensed disease-modifying therapies (DMTs) for MS treatment require prolonged if not lifelong administration. Yet, as people age, the immune system has increasingly reduced responsiveness, known as immunosenescence. Many MS DMTs reduce the responsiveness of the immune system, increasing the risks for infections and possibly cancers. As people with MS (pwMS) age, it is recognized that inflammatory MS activity declines. Several studies have addressed de-escalation of DMTs for relapsing MS under special circumstances. Here, we review evidence for de-escalating DMTs as a strategy that is particularly relevant to pwMS of older age. Treatment de-escalation can involve various strategies, such as extended or reduced dosing, switching from high-efficacy DMTs having higher risks to moderately effective DMTs with lesser risks, or treatment discontinuation. Studies have suggested that for natalizumab extended dosing maintained clinical efficacy while reducing the risk of PML. Extended interval dosing of ocrelizumab mitigated the decline of Ig levels. Retrospective and observational discontinuation studies demonstrate that age is an essential modifier of drug efficacy. Discontinuation of MS treatment in older patients has been associated with a stable disease course, while younger patients who discontinued treatment were more likely to experience new clinical activity. A recently completed 2-year randomized-controlled discontinuation study in 260 stable pwMS > 55 years found stable clinical multiple sclerosis with only a small increased risk of new MRI activity upon discontinuation. DMT de-escalation or discontinuation in MS patients older than 55 years may be non-inferior to continued treatment with immunosuppressive agents having higher health risks. However, despite several small studies, a definite conclusion about treatment de-escalation in older pwMS will require larger and longer studies. Ideally, comparison of de-escalation versus continuation versus discontinuation of DMTs should be done by prospective randomized-controlled trials enrolling sufficient numbers of subjects to allow comparisons for MS patients of both sexes within age groups, such as 55-59, 60-65, 66-69, etc. Optimally, such studies should be 3 years or longer and should incorporate testing for specific markers of immunosenescence (such as T-cell receptor excision circles) to account for differential aging of individuals.

Zobrazit více v PubMed

McGinley MP, Goldschmidt CH, Rae-Grant AD (2021) Diagnosis and treatment of multiple sclerosis: a review. JAMA 325(8):765–779. 10.1001/jama.2020.26858 PubMed

Cree BA, Arnold DL, Fox RJ et al (2022) Long-term efficacy and safety of siponimod in patients with secondary progressive multiple sclerosis: analysis of EXPAND core and extension data up to >5 years. Mult Scler 28(10):1591–1605 PubMed PMC

Wolinsky JS, Arnold DL, Brochet B et al (2020) Long-term follow-up from the ORATORIO trial of ocrelizumab for primary progressive multiple sclerosis: a post-hoc analysis from the ongoing open-label extension of the randomised, placebo-controlled, phase 3 trial. Lancet Neurol 19(12):998–1009 PubMed

Hartung H-P, Meuth SG, Miller DM, Comi G (2021) Stopping disease-modifying therapy in relapsing and progressive multiple sclerosis. Curr Opin Neurol 34(4):598–603 PubMed

Liu Z, Liang O, Ren Y et al (2023) Immunosenescence: molecular mechanisms and diseases. Signal Transduct Target Ther 8(1):200. 10.1038/s41392-023-01451-2 PubMed PMC

Vaughn CB, Jakimovski D, Kavak KS et al (2019) Epidemiology and treatment of multiple sclerosis in elderly populations. Nat Rev Neurol 15:329–342 PubMed

Frischer JM, Göbel G, Berek K et al (2015) Clinical and pathological insights into the dynamic nature of the white matter multiple sclerosis plaque. Ann Neurol 78(5):710–721. 10.1002/ana.24497 PubMed PMC

Tremlett H, Zhao Y, Joseph J, Devonshire V, UBCMS Clinic Neurologists (2008) Relapses in multiple sclerosis are age- and time-dependent. J Neurol Neurosurg Psychiatry 79(12):1368–1374. 10.1136/jnnp.2008.145805 PubMed

McFaul D, Hakopian NN, Smith JB, Nielsen AS, Langer-Gould A (2021) Defining benign/burnt-out MS and discontinuing disease-modifying therapies. Neurol Neuroimmunol Neuroinflamm 8(2):e960. 10.1212/NXI.0000000000000960et PubMed PMC

Dema M, Eixarch H, Villar LM, Montalban X, Espejo C (2021) Immunosenescence in multiple sclerosis: the identification of new therapeutic targets. Autoimmun Rev 20:102893 PubMed

Amoriello R, Mariottini A, Ballerini C (2021) Immunosenescence and autoimmunity: exploiting the T-Cell receptor repertoire to investigate the impact of aging on multiple sclerosis. Front Immunol 12:799380. 10.3389/fimmu.2021.799380 PubMed PMC

Persson R, Lee S, Ulcickas Yood M, Wagner Usn Mc CM, Minton N, Niemczyk S et al (2020) Infections in patients diagnosed with multiple sclerosis: a multi-database study. Mult Scler Relat Disord 41:101982 PubMed

Knapp R, Hardtstock F, Wilke T et al (2023) Comparing the risk of serious infections in patients with and without MS: a German claims data analysis. Mult Scler Relat Disord 72:104583. 10.1016/j.msard.2023.104583 PubMed

Weinberger B (2018) Vaccines for the elderly: current use and future challenges. Immunity Ageing 15:3. 10.1186/s12979-017-0107-2 PubMed PMC

Luna G, Alping P, Burman J et al (2020) Infection risks among patients with multiple sclerosis treated with fingolimod, natalizumab, rituximab, and injectable therapies. JAMA Neurol 77(2):184–191. 10.1001/jamaneurol.2019.3365 PubMed PMC

Langer-Gould AM, Smith JB, Gonzales EG, Piehl F, Li BH (2023) Multiple sclerosis, disease-modifying therapies, and infections. Neurol Neuroimmunol Neuroinflamm 10(6):e200164. 10.1212/NXI.0000000000200164 PubMed PMC

Vollmer BL, Wallach AI, Corboy JR, Dubovskaya K, Alvarez E, Kister I (2020) Serious safety events in rituximab-treated multiple sclerosis and related disorders. Ann Clin Transl Neurol 7:1477–1487. 10.1002/acn3.51136 PubMed PMC

Prosperini L, Haggiag S, Tortorella C, Galgani S, Gasperini C (2021) Age-related adverse events of disease-modifying treatments for multiple sclerosis: a meta-regression. Mult Scler 27(9):1391–1402. 10.1177/1352458520964778 PubMed

Olsson T, Achiron A, Alfredsson L, Berger T, Brassat D, Chan A et al (2013) Anti-JC virus antibody prevalence in a multinational multiple sclerosis cohort. Mult Scler 19(11):1533–1538 PubMed

Stamatellos V-P, Siafis S, Papazisis G (2021) Disease-modifying agents for multiple sclerosis and the risk for reporting cancer: a disproportionality analysis using the US Food and Drug Administration adverse event reporting system database. Br J Clin Pharmacol 87(12):4769–4779. 10.1111/bcp.14916 PubMed

Alping P, Askling J, Burman J et al (2020) Cancer risk for fingolimod, natalizumab, and rituximab in multiple sclerosis patients. Ann Neurol 87(5):688–699. 10.1002/ana.25701 PubMed

Hauser SL, Kappos L, Montalban X, Craveiro L, Chognot C, Hughes R et al (2021) Safety of ocrelizumab in patients with relapsing and primary progressive multiple sclerosis. Neurology 97(16):e1546–e1559. 10.1212/WNL.0000000000012700 PubMed PMC

Leist T, Cook S, Comi G et al (2020) Long-term safety data from the cladribine tablets clinical development program in multiple sclerosis. Mult Scler Relat Disord 46:102572. 10.1016/j.msard.2020.102572 PubMed

Weideman AM, Tapia-Maltos MA, Johnson K, Greenwood M, Bielekova B (2017) Meta-analysis of the age-dependent efficacy of multiple sclerosis treatments. Front Neurol 8:577. 10.3389/fneur.2017.00577 PubMed PMC

Signori A, Schiavetti I, Gallo F et al (2015) Subgroups of multiple sclerosis patients with larger treatment benefits: a meta-analysis of randomized trials. Eur J Neurol 22:960–966 PubMed

Vollmer BL, Wolf AB, Sillau S, Corboy JR, Alvarez E (2022) Evolution of disease modifying therapy benefits and risks: an argument for de-escalation as a treatment paradigm for patients with multiple sclerosis. Front Neurol 12:799138. 10.3389/fneur.2021.799138 PubMed PMC

Graves JS, Krysko KM, Hua LH, Absinta M, Franklin RJM, Segal BM (2023) Ageing and multiple sclerosis. Lancet Neurol 22:66–77. 10.1016/S14744422(22)00184-3 PubMed

Kingwell E, Zhu F, Marrie RA (2015) High incidence and increasing prevalence of multiple sclerosis in British Columbia, Canada: findings from over two decades (1991–2010). J Neurol 262(10):2352–2363 PubMed PMC

Wallin MT et al (2019) The prevalence of MS in the United States: a population-based estimate using health claims data. Neurology 92(10):e1029–e1040. 10.1212/WNL.0000000000007035 PubMed PMC

Selmaj K, Cree BAC, Barnett M, Thompson A, Hartung HP (2024) Multiple sclerosis: time for early treatment with high-efficacy drugs. J Neurol 271(1):105–115 PubMed PMC

Edan G, Comi G, Le Page E, Leray E, Rocca MA, Filippi M (2011) Mitoxantrone prior to interferon beta-1b in aggressive relapsing multiple sclerosis: a 3-year randomised trial. J Neurol Neurosurg Psychiatry 82(12):1344–1350 PubMed

Rieckmann P, Heidenreich F, Sailer M et al (2012) Treatment de-escalation after mitoxantrone therapy: results of a phase IV, multicentre, open-label, randomized study of subcutaneous interferon beta-1a in patients with relapsing multiple sclerosis. Ther Adv Neurol Disord 5(1):3–12 PubMed PMC

Gobbi C, Meier DS, Cotton F et al (2013) Interferon beta 1b following natalizumab discontinuation: one year, randomized, prospective, pilot trial. BMC Neurol 13:101. 10.1186/1471-2377-13-101 PubMed PMC

Havla J, Gerdes LA, Meinl I et al (2011) De-escalation from natalizumab in multiple sclerosis: recurrence of disease activity despite switching to glatiramer acetate. J Neurol 258(9):1665–1669 PubMed

Butkzkueven H, Giacomini PS, Cohan S (2022) Safety of fingolimod in patients with multiple sclerosis switched from natalizumab: results from transition-a 2-year, multicenter, observational, cohort study. Brain Sci 12(2):215. 10.3390/brainsci12020215 PubMed PMC

Zhu Ch, Kalincik T, Horakova D et al (2023) Comparison between dimethyl fumarate fingolimod, and ocrelizumab after natalizumab cessation. JAMA Neurol 80(7):739–748. 10.1001/jamaneurol.2023.1542 PubMed PMC

Alping P, Frisell T, Novakova L et al (2016) Rituximab versus fingolimod after natalizumab in multiple sclerosis patients. Ann Neurol 79(6):950–958. 10.1002/ana.24651 PubMed

Serra Lopez-Matencio JM, Perez Garcia Y, Meca-Lallana V et al (2021) Evaluation of natalizumab pharmacokinetics and pharmacodynamics: toward individualized doses. Front Neurol 12:716548–722021 PubMed PMC

Chang I, Muralidharan KK, Campbell N, Ho P-R (2021) Modeling the efficacy of natalizumab in multiple sclerosis patients who switch from every-4-week dosing to extended-interval dosing. J Clin Pharmacol 61:339–348 PubMed PMC

Ryerson ZL, Foley J, Chang I et al (2019) Risk of natalizumab-associated PML in patients with MS is reduced with extended interval dosing. Neurology 93(15):e1452–e1462. 10.1212/WNL.0000000000008243 PubMed PMC

Bomprezzi R, Pawate S (2014) Extended interval dosing of natalizumab: a two-center, 7-year experience. Ther Adv Neurol Disord 7(5):227–231. 10.1177/1756285614540224 PubMed PMC

Zhovtis Ryerson L, Frohman TC, Foley J et al (2016) Extended interval dosing of natalizumab in multiple sclerosis. J Neurol Neurosurg Psychiatry 87(8):885–889. 10.1136/jnnp-2015-312940 PubMed

De Mercanti SF, Signori A, Cordioli C et al (2021) MRI activity and extended interval of natalizumab dosing regimen: a multicentre Italian study. J Neurol Sci 424:117385. 10.1016/j.jns.2021.117385 PubMed

Chisari CG, Grimaldi LM, Salemi G et al (2020) Clinical effectiveness of different natalizumab interval dosing schedules in a large Italian population of patients with multiple sclerosis. J Neurol Neurosurg Psychiatry 91:1297–1303. 10.1136/jnnp-2020-323472 PubMed

Butzkueven H, Kappos L, Spelman T et al (2021) No evidence for loss of natalizumab effectiveness with every-6-week dosing: A propensity score-matched comparison with every-4-week dosing in patients enrolled in the tysabri observational program (TOP). Ther Adv Neurol Disord 14:17562864211042458. 10.1177/17562864211042458 PubMed PMC

Ryerson ZL, Naismith RT, Krupp LB et al (2022) No difference in radiologic outcomes for natalizumab patients treated with extended interval dosing compared with standard interval dosing: Real-world evidence from MS PATHS. Mult Scler Relat Disord 58:103480. 10.1016/j.msard.2021.103480 PubMed

Foley JF, Defer G, Zhovtis Ryerson L et al (2022) Comparison of switching to 6-week dosing of natalizumab versus continuing with 4-week dosing in patients with relapsing–remitting multiple sclerosis (NOVA): a randomised, controlled, open-label, phase 3b trial. Lancet Neurol 21(7):608–619. 10.1016/S1474-4422(22)00143-0 PubMed

Ryerson ZL, Foley JF, Defer G et al (2023) Exploratory clinical efficacy and patient-reported outcomes from NOVA: a randomized controlled study of intravenous natalizumab 6-week dosing versus continued 4-week dosing for relapsing–remitting multiple sclerosis. Mult Scler Relat Disord 72:104561. 10.1016/j.msard.2023.104561 PubMed

Valentino P, Malucchi S, Martire S, Bava CI, Capobianco MA, Bertolotto A (2022) sNFL applicability as additional monitoring tool in natalizumab extended interval dosing regimen for RRMS patients. Mult Scler Relat Disord 67:104176. 10.1016/j.msard.2022 PubMed

Rolfes L, Pawlitzki M, Pfeuffer S et al (2021) Ocrelizumab extended interval dosing in multiple sclerosis in times of COVID-19. Neurol Neuroimmunol Neuroinflamm 8:e1035. 10.1212/NXI.0000000000001035 PubMed PMC

Sahi NK, Ali Abidi SM, Salim O, Abraham R, Kalra S, Al-Araji A (2021) Clinical impact of Ocrelizumab extended interval dosing during the COVID-19 pandemic and associations with CD19+B-cell repopulation. Mult Scler Relat Disord 56:103287. 10.1016/j.msard.2021.103287 PubMed PMC

Guerrieri S, Bucca C, Nozzolillo A et al (2023) Ocrelizumab extended-interval dosing in multiple sclerosis during SARS-CoV-2 pandemic: a real-world experience. Eur J Neurol 30(9):2859–2864. 10.1111/ene.15891 PubMed

Rjeily NB, Fitzgerald KC, Mowry EM (2024) Extended interval dosing of ocrelizumab in patients with multiple sclerosis is not associated with meaningful differences in disease activity. Mult Scler J 30:257–260. 10.1177/13524585231208311 PubMed

Baker D, Pryce G, James LK, Marta M, Schmierer K (2020) The ocrelizumab phase II extension trial suggests the potential to improve the risk: benefit balance in multiple sclerosis. Mult Scler Relat Disord 44:102279. 10.1016/j.msard.2020.102279 PubMed

Schuckmann A, Steffen F, Zipp F, Bittner S, Pape K (2023) Impact of extended interval dosing of ocrelizumab on immunoglobulin levels in multiple sclerosis. Medicine 4(6):361-372.e3. 10.1016/j.medj.2023.05.001 PubMed

Rodriguez-Mogeda C, van Lierop ZYGJ, van der Pol SMA et al (2023) Extended interval dosing of ocrelizumab modifies the repopulation of B cells without altering the clinical efficacy in multiple sclerosis. J Neuroinflamm 20(1):215. 10.1186/s12974-023-02900-z PubMed PMC

Rempe T, Elfasi A, Rodriguez E, Vasquez M, Graves J, Kinkel R (2023) Ocrelizumab B-cell repopulation-guided extended interval dosing versus standard dosing—similar clinical efficacy with decreased immunoglobulin M deficiency rates. Mult Scler Relat Disord 79:105028. 10.1016/j.msard.2023.105028 PubMed

Starvaggi Cucuzza C, Longinetti E, Ruffin N et al (2022) Sustained low relapse rate with highly variable B-cell repopulation dynamics with extended rituximab dosing intervals in multiple sclerosis. Neurol Neuroimmunol Neuroinflamm 10(1):e200056 PubMed PMC

Yamout BI, Zeineddine MM, Sawaya RA, Khoury SJ (2015) Safety and efficacy of reduced fingolimod dosage treatment. J Neuroimmunol 285:13–15. 10.1016/j.jneuroim.2015.05.012 PubMed

Ramos-Lopes J, Batista S, Barradas P et al (2021) Clinical effectiveness of reduced fingolimod dose in relapsing–remitting multiple sclerosis-a Portuguese cohort. Neurol Sci 42(3):1039–1043. 10.1007/s10072-020-04629-6 PubMed

Cree BAC, Goldman MD, Corboy JR, Singer BA, Fox EJ, Arnold DL, Ford C, Weinstock-Guttman B, Bar-Or A, Mientus S, Sienkiewicz D, Zhang Y, Karan R, Tenenbaum N (2020) Efficacy and safety of 2 fingolimod doses vs glatiramer acetate for the treatment of patients with relapsing-remitting multiple sclerosis: a randomized clinical trial. JAMA Neurol 78(1):1–13. 10.1001/jamaneurol.2020.2950 PubMed PMC

Phillips JT, Agrella S, Fox RJ (2017) Dimethyl fumarate a review of efficacy and practical management strategies for common adverse events in patients with multiple sclerosis. Int J MS Care 19:74–83. 10.7224/1537-2073.2015-086 PubMed PMC

Kelly H, Vishnevetsky A, Chibnik LB, Levy M (2023) Hypogammaglobulinemia secondary to B-cell depleting therapies in neuroimmunology: comparing management strategies. Mult Scler J Exp Transl Clin. 10.1177/20552173231182534 PubMed PMC

Disanto G, Ripellino P, Riccitelli GC, Sacco R, Scotti B, Fucili A, Pravatà E, Kuhle J, Gobbi C, Zecca C (2021) De-escalating rituximab dose results in stability of clinical, radiological, and serum neurofilament levels in multiple sclerosis. Mult Scler 27(8):1230–1239. 10.1177/1352458520952036 PubMed

Birnbaum G (2017) Stopping disease-modifying therapy in nonrelapsing multiple sclerosis: experience from a clinicalpractice. Int J MS Care 19(1):11–14. 10.7224/1537-2073.2015-032 PubMed PMC

Bsteh G, Feige J, Ehling R et al (2017) Discontinuation of disease-modifying therapies in multiple sclerosis—clinical outcome and prognostic factors. Mult Scler 23(9):1241–1248. 10.1177/1352458516675751 PubMed

Hua LH, Fan TH, Conway D, Thompson N, Kinzy TG (2019) Discontinuation of disease-modifying therapy in patients with multiple sclerosis over age 60. Mult Scler 25(5):699–708. 10.1177/1352458518765656 PubMed

Kaminsky AL, Omorou AY, Soudant M et al (2020) Discontinuation of disease-modifying treatments for multiple sclerosis in patients aged over 50 with disease inactivity. J Neurol 267(12):3518–3527. 10.1007/s00415-020-10029-9 PubMed

Bonenfant J, Bajeux E, Deburghgraeve V, Le Page E, Edan G, Kerbrat A (2017) Can we stop immunomodulatory treatments in secondary progressive multiple sclerosis? Eur J Neurol 24(2):237–244. 10.1111/ene.13181 PubMed

Yano H, Gonzalez C, Healy BC, Glanz BI, Weiner HL, Chitnis T (2019) Discontinuation of disease-modifying therapy for patients with relapsing–remitting multiple sclerosis: effect on clinical and MRI outcomes. Mult Scler Relat Disord 35:119–127. 10.1016/j.msard.2019.07.021 PubMed

Jakimovski D, Kavak KS, Vaughn CB et al (2022) Discontinuation of disease modifying therapies is associated with disability progression regardless of prior stable disease and age. Mult Scler Relat Disord 57:103406. 10.1016/j.msard.2021.103406 PubMed

Siger M, Durko A, Nicpan A, Konarska M, Grudziecka M, Selmaj K (2011) Discontinuation of interferon beta therapy in multiple sclerosis patients with high pre-treatment disease activity leads to prompt return to previous disease activity. J Neurol Sci 303(1–2):50–52. 10.1016/j.jns.2011.01.016 PubMed

Kister I, Spelman T, Patti F et al (2018) Predictors of relapse and disability progression in MS patients who discontinue disease-modifying therapy. J Neurol Sci 391:72–76. 10.1016/j.jns.2018.06.001 PubMed

Chappuis M, Rousseau C, Bajeux E et al (2023) Discontinuation of second- versus first-line disease-modifying treatment in middle-aged patients with multiple sclerosis. J Neurol 270(1):413–422. 10.1007/s00415-022-11341-2 PubMed

Coerver E, Fung WH, De Beukelaar J et al. Discontinuation of first-line disease-modifying therapy in stable multiple sclerosis (DOT-MS): an early-terminated multicenter randomized controlled trail. In: 9th Joint Ectrims-Actrims meeting, Milano 11–13 Oct 2023, Abstract 1281/O099

Corboy JR, Fox RJ, Kister I et al (2023) Risk of new disease activity in patients with multiple sclerosis who continue or discontinue disease-modifying therapies (DISCOMS): a multicentre, randomised, single-blind, phase 4, non-inferiority trial. Lancet Neurol 22(7):568–577. 10.1016/S1474-4422(23)00154-0 PubMed

Jouvenot G, Courbon G, Lefort M et al (2024) High-efficacy therapy discontinuation vs continuation in patients 50 years and older with nonactive MS. JAMA Neurol. 10.1001/jamaneurol.2024.0395 PubMed PMC

Wandall-Holm MF, Holm RP, Heick A, Langkilde AR, Magyari M (2024) Risk of T2 lesions when discontinuing fingolimod: a nationwide predictive and comparative study. Brain Commun 6(1):fcad358. 10.1093/braincomms/fcad358 PubMed PMC

Prosperini L, Haggiag S, Ruggieri S, Tortorella C, Gasperini C (2023) Stopping disease-modifying treatments in multiple sclerosis: a systematic review and meta-analysis of real-world studies. CNS Drugs 37(10):915–927. 10.1007/s40263-023-01038-z PubMed

Bsteh G, Hegen H, Riedl K et al (2021) Quantifying the risk of disease reactivation after interferon and glatiramer acetate discontinuation in multiple sclerosis: the VIAADISC score. Eur J Neurol 28(5):1609–1616. 10.1111/ene.14705 PubMed PMC

Bose G, Healy BC, Saxena S et al (2023) Increasing neurofilament and glial fibrillary acidic protein after treatment discontinuation predicts multiple sclerosis disease activity. Neurol Neuroimmunol Neuroinflamm. 10(6):e200167. 10.1212/NXI.0000000000200167 PubMed PMC

Fox RJ, Cree BAC, de Sèze J, Gold R, Hartung HP, Jeffery D, Kappos L, Montalban X, Weinstock-Guttman B, Singh CM, Altincatal A, Belviso N, Avila RL, Ho PR, Su R, Engle R, Sangurdekar D, de Moor C, Fisher E, Kieseier BC, Rudick RA (2024) Temporal relationship between serum neurofilament light chain and radiologic disease activity in patients with multiple sclerosis. Neurology 102(9):e209357. 10.1212/WNL.0000000000209357 PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...