Small genomes and large seeds: chromosome numbers, genome size and seed mass in diploid Aesculus species (Sapindaceae)
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
28065925
PubMed Central
PMC5604552
DOI
10.1093/aob/mcw261
PII: mcw261
Knihovny.cz E-zdroje
- Klíčová slova
- Aesculus, chromosome number, genome size, phylogeny, seed mass,
- MeSH
- Aesculus genetika fyziologie MeSH
- chromozomy rostlin * MeSH
- délka genomu * MeSH
- genom rostlinný * MeSH
- ploidie MeSH
- semena rostlinná fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND AND AIMS: Aesculus L. (horse chestnut, buckeye) is a genus of 12-19 extant woody species native to the temperate Northern Hemisphere. This genus is known for unusually large seeds among angiosperms. While chromosome counts are available for many Aesculus species, only one has had its genome size measured. The aim of this study is to provide more genome size data and analyse the relationship between genome size and seed mass in this genus. METHODS: Chromosome numbers in root tip cuttings were confirmed for four species and reported for the first time for three additional species. Flow cytometric measurements of 2C nuclear DNA values were conducted on eight species, and mean seed mass values were estimated for the same taxa. KEY RESULTS: The same chromosome number, 2 n = 40, was determined in all investigated taxa. Original measurements of 2C values for seven Aesculus species (eight taxa), added to just one reliable datum for A. hippocastanum , confirmed the notion that the genome size in this genus with relatively large seeds is surprisingly low, ranging from 0·955 pg 2C -1 in A. parviflora to 1·275 pg 2C -1 in A. glabra var. glabra. CONCLUSIONS: The chromosome number of 2 n = 40 seems to be conclusively the universal 2 n number for non-hybrid species in this genus. Aesculus genome sizes are relatively small, not only within its own family, Sapindaceae, but also within woody angiosperms. The genome sizes seem to be distinct and non-overlapping among the four major Aesculus clades. These results provide an extra support for the most recent reconstruction of Aesculus phylogeny. The correlation between the 2C values and seed masses in examined Aesculus species is slightly negative and not significant. However, when the four major clades are treated separately, there is consistent positive association between larger genome size and larger seed mass within individual lineages.
Department of Evolution and Ecology University of California Davis CA 95616 USA
Institute of Botany Czech Academy of Sciences Pruhonice CZ 252 43 Czech Republic
Zobrazit více v PubMed
Aliyu OM. 2014. Analysis of absolute nuclear DNA content reveals a small genome and intra-specific variation in Cashew (Anacardium occidentale L.), Anacardiaceae. Silvae Genetica 63: 285−293.
Bai C-k, Cao B, Li G-s.. 2013. Correlations of plant seed dispersal pattern with genome size and 1000-seed mass. Chinese Journal of Ecology 32: 832−837.
Beaulieu JM, Moles AT, Leitch IJ, Bennett MD, Dickie JB, Knight CA.. 2007. Correlated evolution of genome size and seed mass. New Phytologist 173: 422−437. PubMed
Beger H. 1924. 77. Fam. Hippocastanaceae. Rosskastaniengewächse In: Hegi G, ed. Illustrierte Flora von Mitteleuropa, V/1. München: J.F. Lehmanns Verlag, 296–309.
Bennett MD, Smith JB, Heslop-Harrison JS.. 1982. Nuclear DNA amounts in angiosperms. Proceedings of the Royal Society B: Biological Sciences 216: 179−199. PubMed
Bennett MD. 1987. Variation in genomic form in plants and its ecological implications. New Phytologist 106 (Suppl.): 177−200.
Bennett MD, Leitch IJ.. 2005. Nuclear DNA amounts in angiosperms – progress, problems and prospects. Annals of Botany 95: 45−90. PubMed PMC
Bennett MD, Leitch IJ.. 2012. Plant DNA C-values database (release 6·0, December 2012) http://data.kew.org/cvalues/ (last accessed 8 December 2016).
Benor S, Fuchs J, Blattner FR.. 2011. Genome size variation in Corchorus olitorius (Malvaceae s.l.) and its correlation with elevation and phenotypic traits. Genome 54: 575−585. PubMed
Bonner FT, Karrfalt RP, Nisley RG, eds. 2008. The woody plant seed manual. USDA Forest Service, Agriculture Handbook 727.
Caceres ME, De Pace C, Scarascia Mugnozza GT, Kotsonis P, Caccarelli M, Cionini PG.. 1998. Genome size variations within Dasypyrum villosum: correlations with chromosomal traits, environmental factors and plant phenotypic characteristics and behavior in reproduction. Theoretical and Applied Genetics 96: 559−567.
Chanon AM. 2005. Studies on the reproductive capacity of Aesculus parviflora and Aesculus pavia: opportunities for their improvement through interspecific hybridization. PhD Thesis, Ohio State University, USA.
Chen G-Q, Guo S-L, Yin L-P.. 2010. Applying DNA C-values to evaluate invasiveness of angiosperms: validity and limitation. Biological Invasions 12: 1335−1348.
Chung J, Lee J-H, Arumuganathan K, Graef GL, Specht JE.. 1998. Relationships between nuclear DNA content and seed and leaf size in soybean. Theoretical and Applied Genetics 96: 1064−1068.
Coulleri JP, Urdampilleta JD, Ferrucci MS.. 2014. Genome size evolution in Sapindaceae at subfamily level: a case study of independence in relation to karyological and palynological traits. Botanical Journal of the Linnean Society 174: 589−600.
Dąbrowska J. 1992. Chromosome number and DNA content in taxa of Achillea L. in relation to the distribution of the genus. Prace Botaniczne 49: 1−83.
Danoghue MJ, Smith SA.. 2004. Patterns in the assembly of temperate forests around the Northern Hemisphere. Philosophical Transactions of the Royal Society B: Biologial Sciences 359: 1633−1644. PubMed PMC
Daws MI, Lydall E, Chmielarz P, Leprice O, et al.2004. Developmental heat sum influences recalcitrant seed traits in Aesculus hippocastanum across Europe. New Phytologist 162: 157−166.
Dobeš C, Vitek E.. 2000. Documented chromosome number checklist of Austrian vascular plants. Wien: Verlag des Naturhistorischens Museums.
Doležel J, Greilhuber J, Suda J.. 2007. Estimation of DNA content in plants using flow cytometry. Nature Protocols 2: 2233−2244. PubMed
Dyer AF. 1963. The use of lacto-propionic orcein in rapid squash methods for chromosome preparations. Stain Technology 38: 85−90.
Fedorov AA, ed. 1969. Chromosome numbers of flowering plants. Leningrad: Nauka.
Forest F, Drouin JN, Charest R, Brouilett L, Bruneau A.. 2001. A morphological phylogenetic analysis of Aesculus L. and Billia Peyrr. (Sapindaceae). Canadian Journal of Botany 79: 154−169.
Gallagher RV, Leishman MR, Miller JT. et al. 2011. Invasiveness in introduced Australian acacias: the role of species traits and genome size. Diversity and Distributions 17: 884−897.
Grotkopp E, Rejmánek M, Sanderson MJ, Rost TL.. 2004. Evolution of genome size in pines (Pinus) and its life-history correlates: supertree analyses. Evolution 58: 1705−1729. PubMed
Gunn BF, Baudouin L, Beulé T, et al.2015. Ploidy and domestication are associated with genome size variation in palms. American Journal of Botany 102: 1625−1633. PubMed
Hanson L, Leitch IJ, Bennett MD.. 2002. Unpublished data from the Jodrell Laboratory, Royal Botanic Garden Kew. In: Bennett MD, Leitch IJ. 2012. Plant DNA C-values database (release 6·0, December 2012) http://data.kew.org/cvalues/CvalServlet?querytype=2. (last accessed 8 December 2016).
Hardin JW. 1957a. A revision of the American Hippocastanaceae. Brittonia 9: 145−171.
Hardin JW. 1957b. A revision of the American Hippocastanaceae − II. Brittonia 9: 173−195.
Hardin JW. 1960. Studies in the Hippocastanaceae. V. Species of the Old World. Brittonia 12: 26−38.
Harris AJ, Xiang Q-Y, Thomas DT.. 2009. Phylogeny, origin and biogeographic history of Aesculus L. (Sapindales) − an update from combined analysis of DNA sequences, morphology and fossils. Taxon 58: 108−126.
Henderson A, Galeano G, Bernal R.. 1995. Palms of the Americas. Princeton, NJ: Princeton University Press.
Hoshizaki K, Suzuki W, Nakashizula T.. 1999. Evaluation of secondary dispersal in a large-seeded tree Aesculus turbinata: a test of directed dispersal. Plant Ecology 144: 167−176.
Irie K, Tsuyuzaki S.. 2001. Dispersal timing, palatability and caching of acorns of Aesculus turbinata. Plant Biosystems 145: 798−801.
IPCN Chromosome Reports Database, Missouri Botanical Garden. 2015. http://www.tropicos.org/Project/IPCN (last accessed 8 December 2016).
Kim S, Han M, Rayburn AL.. 2015. Genome size and seed mass analyses in Cicer arietinum (Chickpea) and wild Cicer species. HortScience 50: 1751−1756.
Knight CA, Beaulieu JM.. 2008. Genome size scaling through phenotype space. Annals of Botany 101: 759−766. PubMed PMC
Knight CA, Molinari NA, Petrov DA.. 2005. The large genome constrain hypothesis: evolution, ecology and phenotype. Annals of Botany 95: 177−190. PubMed PMC
Kubešová M, Moravcová L, Suda J, Jarošík V, Pyšek P.. 2010. Naturalized plants have smaller genomes than their non-invading relatives: a flow cytometric analysis of the Czech alien flora. Preslia 82: 81−96.
Leishman MR, Westoby M.. 1994. The role of large seeds in shaded conditions: experimental evidence. Functional Ecology 8: 205−214.
Leitch IJ, Soltis DE, Soltis PS, Bennett MD.. 2005. Evolution of DNA amounts across land plants (Embryophyta). Annals of Botany 95: 207−217. PubMed PMC
Linkies A, Graeber K, Knight C, Leubner-Metzger G.. 2010. The evolution of seeds. New Phytologist 186: 817−831. PubMed
Mendoza E, Dirzo R.. 2009. Seed tolerance to predation: evidence from the toxic seeds of the buckeye tree (Aesculus californica; Sapindaceae). American Journal of Botany 96: 1255−1261. PubMed
Měsíček J, Javůrková-Jarolímová V.. 1992. List of chromosome numbers of the Czech vascular plants. Praha: Academia.
Obroucheva NV, Lityagina SV.. 2007. Dormancy release and germination in recalcitrant Aesculus hippocastanum seeds. Dendrobiology 57: 27−33.
Ohri D. 2005. Climate and growth form: the consequences for genome size in plants. Plant Biology 7: 449−458. PubMed
Ordnuff R, Lloyd R.. 1965. Documented chromosome numbers of plants. Madroño 18: 122−126.
Pandit MK, White SM, Pocock MJO.. 2014. The contrasting effects of genome size, chromosome number and ploidy level on plant invasiveness: a global analysis. New Phytologist 203: 697−703. PubMed
Pogan E, Wcislo H, Jankun A.. 1980. Further studies in chromosome numbers in Polish Angiosperms. Part XIII. Acta Biologica Cracoviensia, Series Botanica 22: 37−69.
R Core Team. 2015. R: A language and environment for statistical computing R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/ (last accessed 18 August 2016).
Rafiq SI, Jan K, Singh S, Saxena DC.. 2015. Physicochemical, pasting, rheological, thermal and morphological properties of horse chestnut starch. Journal of Food Science and Technology 52: 5651−5660. PubMed PMC
Rejmánek M, Richardson DM.. 2013. Trees and shrubs as invasive alien species – 2013 update of the global database. Diversity and Distributions 19: 1093−1094.
Seed Information Database. 2008. Royal Botanic Gardens, Kew (release 7·1, May 2008). http://data.kew.org/sid/SidServlet?Clade=&Order=&Family = &APG=off&Genus=Aesculus&Species=&StorBehav=0 (last accessed 18 August 2016).
Skovsted A. 1929. Cytological observations of the genus Aesculus L. with some observations on Aesculus carnea Willd., a tetraploid species arisen by hybridization. Hereditas12: 64−70.
Suda J, Meyerson LA, Leitch IJ, Pyšek P.. 2015. The hidden side of plant invasions: the role of genome size. New Phytologist 205: 994−1007. PubMed
Suda J, Trávníček P, Mandák B, Berchová-Bímová K.. 2010. Genome size as a marker for identifying the invasive alien taxa in Fallopia section Reynoutria. Preslia 82: 97−106.
Temsch EM, Greilhuber J, Krisai R.. 2010. Genome size in liverworts. Preslia 82: 63−80.
Thompson DC, Thompson PS.. 1980. Food habits and caching behavior of urban grey squirrels. Canadian Journal of Zoology 58: 701−710.
Turland N, Xia N.. 2005. A new combination in Chinese Aesculus (Hippocastanaceae). Novon 15: 488−489.
Upcott M. 1936. The parents and progeny of Aesculus carnea. Journal of Genetics 33: 135−149.
Xiang Q-Y, Crawford DJ, Wolfe AD, Tang Y-C, DePamphilis CV.. 1998. Origin and biogeography of Aesculus L. (Hippocastanaceae): a molecular phylogenetic perspective. Evolution 52: 988−997. PubMed