Quantifying Soil Microbiome Abundance by Metatranscriptomics and Complementary Molecular Techniques-Cross-Validation and Perspectives
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
21-17322M
The Czech Science Foundation
BO 5559/1-1
Deutsche Forschungsgemeinschaft
INST 292/146-1 FUGB
Deutsche Forschungsgemeinschaft
UR198/7-1
Deutsche Forschungsgemeinschaft
813114
HORIZON EUROPE European Innovation Council
Research Council of Norway
PubMed
40459094
PubMed Central
PMC12415835
DOI
10.1111/1755-0998.14130
Knihovny.cz E-zdroje
- Klíčová slova
- RNA, biomass estimates, extraction standard, metatranscriptomics, quantitative transcriptomics,
- MeSH
- Bacteria * genetika klasifikace MeSH
- metagenomika * metody MeSH
- mikrobiota * MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- RNA ribozomální 16S genetika MeSH
- stanovení celkové genové exprese * metody MeSH
- transkriptom MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- půda MeSH
- RNA ribozomální 16S MeSH
Linking meta-omics and biogeochemistry approaches in soils has remained challenging. This study evaluates the use of an internal RNA extraction standard and its potential for making quantitative estimates of a given microbial community size (biomass) in soil metatranscriptomics. We evaluate commonly used laboratory protocols for RNA processing, metatranscriptomic sequencing and quantitative reverse transcription polymerase chain reaction (qRT-PCR). Metatranscriptomic profiles from soil samples were generated using two library preparation protocols and prepared in triplicates. RNA extracted from pure cultures of Saccharolobus solfataricus was added to the samples as an internal nucleic acid extraction standard (NAEstd). RNA reads originating from NAEstd were identified with a 99.9% accuracy. A remarkable replication consistency between triplicates was seen (average Bray-Curtis dissimilarity 0.03 ± 0.02), in addition to a clear library preparation bias. Nevertheless, the between-sample pattern was not affected by library type. Estimates of 16S rRNA transcript abundance derived from qRT-PCR experiments, NAEstd and a previously published quantification method of metatranscriptomics (hereafter qMeTra) were compared with microbial biomass carbon (MBC) and nitrogen (MBN) extracts. The derived biomass estimates differed by orders of magnitude. While most estimates were significantly correlated with each other, no correlation was observed between NAEstd and MBC extracts. We discuss how simultaneous changes in community size and the soils nucleic acid retention strength might hamper accurate biomass estimation. Adding NAEstd has the potential to shed important light on nucleic acid retention in the substance matrix (e.g., soil) during extraction.
Agricultural University of Iceland Hvanneyri Iceland
Department of Arctic and Marine Biology UiT The Arctic University of Norway Tromsø Norway
Department of Bacterial Physiology University Greifswald Greifswald Germany
Department of Microbiology and Ecosystem Science University Vienna Vienna Austria
Institute of Bioinformatics University Medicine Greifswald Greifswald Germany
Institute of Mathematics and Computer Science University Greifswald Greifswald Germany
Institute of Soil Biology and Biogeochemistry Biology Centre CAS České Budějovice Czech Republic
Interfaculty Institute of Genetics and Functional Genomics University Greifswald Greifswald Germany
Zobrazit více v PubMed
Adl, S. M. , Habura A., and Eglit Y.. 2014. “Amplification Primers of SSU rDNA for Soil Protists.” Soil Biology and Biochemistry 69: 328–342. 10.1016/j.soilbio.2013.10.024. DOI
Alteio, L. V. , Séneca J., Canarini A., et al. 2021. “A Critical Perspective on Interpreting Amplicon Sequencing Data in Soil Ecological Research.” Soil Biology and Biochemistry 160: 108357. 10.1016/j.soilbio.2021.108357. DOI
Anthony, M. A. , Bender S. F., and van der Heijden M. G. A.. 2023. “Enumerating Soil Biodiversity.” Proceedings of the National Academy of Sciences of the United States of America 120, no. 33: e2304663120. 10.1073/pnas.2304663120. PubMed DOI PMC
Apprill, A. , Mcnally S., Parsons R., and Weber L.. 2015. “Minor Revision to V4 Region SSU rRNA 806R Gene Primer Greatly Increases Detection of SAR11 Bacterioplankton.” Aquatic Microbial Ecology 75, no. 2: 129–137. 10.3354/ame01753. DOI
Bastida, F. , Eldridge D. J., García C., Kenny Png G., Bardgett R. D., and Delgado‐Baquerizo M.. 2021. “Soil Microbial Diversity–Biomass Relationships Are Driven by Soil Carbon Content Across Global Biomes.” ISME Journal 15, no. 7: 2081–2091. 10.1038/s41396-021-00906-0. PubMed DOI PMC
Bölscher, T. , Vogel C., Olagoke F. K., et al. 2024. “Beyond Growth: The Significance of Non‐Growth Anabolism for Microbial Carbon‐Use Efficiency in the Light of Soil Carbon Stabilisation.” Soil Biology and Biochemistry 193: 109400. 10.1016/j.soilbio.2024.109400. DOI
Bonato Asato, A. E. , Wirth C., Eisenhauer N., and Hines J.. 2023. “On the Phenology of Soil Organisms: Current Knowledge and Future Steps.” Ecology and Evolution 13, no. 4: e10022. 10.1002/ece3.10022. PubMed DOI PMC
Bradford, M. A. , Wieder W. R., Bonan G. B., Fierer N., Raymond P. A., and Crowther T. W.. 2016. “Managing Uncertainty in Soil Carbon Feedbacks to Climate Change.” Nature Climate Change 6, no. 8: 751–758. 10.1038/nclimate3071. DOI
Bratbak, G. , and Dundas I.. 1984. “Bacterial Dry Matter Content and Biomass Estimations.” Applied and Environmental Microbiology 48, no. 4: 755–757. PubMed PMC
Bushnell, B. 2015. “
Cleaves, H. J. , Jonsson C. M., Jonsson C. L., Sverjensky D. A., and Hazen R. M.. 2010. “Adsorption of Nucleic Acid Components on Rutile (TiO PubMed DOI
Coclet, C. , Sorensen P. O., Karaoz U., et al. 2023. “Virus Diversity and Activity Is Driven by Snowmelt and Host Dynamics in a High‐Altitude Watershed Soil Ecosystem.” Microbiome 11, no. 1: 237. 10.1186/s40168-023-01666-z. PubMed DOI PMC
Conant, R. T. , Ryan M. G., Ågren G. I., et al. 2011. “Temperature and Soil Organic Matter Decomposition Rates—Synthesis of Current Knowledge and a Way Forward.” Global Change Biology 17, no. 11: 3392–3404. 10.1111/j.1365-2486.2011.02496.x. DOI
Crowther, T. W. , Todd‐Brown K. E. O., Rowe C. W., et al. 2016. “Quantifying Global Soil Carbon Losses in Response to Warming.” Nature 540, no. 7631: 104–108. 10.1038/nature20150. PubMed DOI
Dahl, M. B. , Söllinger A., Sigurðsson P., et al. 2023. “Long‐Term Warming‐Induced Trophic Downgrading in the Soil Microbial Food Web.” Soil Biology and Biochemistry 181: 109044. 10.1016/j.soilbio.2023.109044. DOI
de Mendiburu, F. 2023. “agricolae: Statistical Procedures for Agricultural Research.” R Package Version 1.3‐7. https://CRAN.R‐project.org/package=agricolae.
Filser, J. , Faber J. H., Tiunov A. V., et al. 2016. “Soil Fauna: Key to New Carbon Models.” Soil 2, no. 4: 565–582. 10.5194/soil-2-565-2016. DOI
Gagelidze, N. A. , Amiranashvili L. L., Sadunishvili T. A., Kvesitadze G. I., Urushadze T. F., and Kvrivishvili T. O.. 2018. “Bacterial Composition of Different Types of Soils of Georgia.” Annals of Agrarian Science 16, no. 1: 17–21.
Gann, E. R. , Kang Y., Dyhrman S. T., Gobler C. J., and Wilhelm S. W.. 2021. “Metatranscriptome Library Preparation Influences Analyses of Viral Community Activity During a Brown Tide Bloom.” Frontiers in Microbiology 12: 664189. 10.3389/fmicb.2021.664189. PubMed DOI PMC
Geisen, S. , Tveit A. T., Clark I. M., et al. 2015. “Metatranscriptomic Census of Active Protists in Soils.” ISME Journal 9, no. 10: 2178–2190. 10.1038/ismej.2015.30. PubMed DOI PMC
Gifford, S. M. , Sharma S., Rinta‐Kanto J. M., and Moran M. A.. 2011. “Quantitative Analysis of a Deeply Sequenced Marine Microbial Metatranscriptome.” ISME Journal 5, no. 3: 461–472. 10.1038/ismej.2010.141. PubMed DOI PMC
Gruber‐Vodicka, H. R. , Seah B. K. B., and Pruesse E.. 2020. “phyloFlash: Rapid Small‐Subunit rRNA Profiling and Targeted Assembly From Metagenomes.” mSystems 5, no. 5: e00920‐20. 10.1128/mSystems.00920-20. PubMed DOI PMC
Hadziavdic, K. , Lekang K., Lanzen A., Jonassen I., Thompson E. M., and Troedsson C.. 2014. “Characterization of the 18s rRNA Gene for Designing Universal Eukaryote Specific Primers.” PLoS One 9, no. 2: e87624. 10.1371/journal.pone.0087624. PubMed DOI PMC
Joergensen, R. G. 1996. “The Fumigation‐Extraction Method to Estimate Soil Microbial Biomass: Calibration of the K‐ EC Value.” Soil Biology and Biochemistry 28, no. 1: 25–31.
Jonasson, S. , Michelsen A., Schmidt I. K., Nielsen E. V., and Callaghan T. V.. 1996. “Microbial Biomass C, N and P in Two Arctic Soils and Responses to Addition of NPK Fertilizer and Sugar: Implications for Plant Nutrient Uptake.” Oecologia 106, no. 4: 507–515. 10.1007/BF00329709. PubMed DOI
Kim, B. H. , and Gadd G. M.. 2008. “
Kopylova, E. , Noé L., and Touzet H.. 2012. “SortMeRNA: Fast and Accurate Filtering of Ribosomal RNAs in Metatranscriptomic Data.” Bioinformatics 28, no. 24: 3211–3217. 10.1093/bioinformatics/bts611. PubMed DOI
Kramer, S. , Dibbern D., Moll J., et al. 2016. “Resource Partitioning Between Bacteria, Fungi, and Protists in the Detritusphere of an Agricultural Soil.” Frontiers in Microbiology 7, no. SEP: 1–12. 10.3389/fmicb.2016.01524. PubMed DOI PMC
Lanzén, A. , Jørgensen S. L., Huson D. H., et al. 2012. “CREST – Classification Resources for Environmental Sequence Tags.” PLoS One 7, no. 11: e49334. 10.1371/journal.pone.0049334. PubMed DOI PMC
Loferer‐Krößbacher, M. , Klima J., and Psenner R.. 1998. “Determination of Bacterial Cell Dry Mass by Transmission Electron Microscopy and Densitometric Image Analysis.” Applied and Environmental Microbiology 64, no. 2: 688–694. 10.1128/AEM.64.2.688-694.1998. PubMed DOI PMC
Matamouros, S. , Gensch T., Cerff M., et al. 2023. “Growth‐Rate Dependency of Ribosome Abundance and Translation Elongation Rate in PubMed DOI PMC
Metting, F. B. (Ed.). 1993. Soil Microbial Ecology. Marcel Dekker. Topley and Wilson's Microbiology and Microbial Infections, Guy R. Knudsen, Bacteriology of Soils and Plants, p. 2.
Milo, R. , and Phillips R.. 2015. “
Moran, M. A. , Satinsky B., Gifford S. M., et al. 2012. “Sizing Up Metatranscriptomics.” ISME Journal 7, no. 2: 237–243. 10.1038/ismej.2012.94. PubMed DOI PMC
Naylor, D. , Sadler N., Bhattacharjee A., et al. 2020. “Soil Microbiomes Under Climate Change and Implications for Carbon Cycling.” Annual Review of Environment and Resources 45, no. 1: 29–59. 10.1146/annurev-environ-012320-082720. DOI
Neidhardt, F. C. , Ingraham J. L., and Schaechter M.. 1990. Physiology of the Bacterial Cell: A Molecular Approach, 442–462. Sinauer Associates Inc.
Neidhardt, F. C. , and Umbarger H. E.. 1996. “Chemical composition of
Nielsen, U. N. , Ayres E., Wall D. H., and Bardgett R. D.. 2011. “Soil Biodiversity and Carbon Cycling: A Review and Synthesis of Studies Examining Diversity – Function Relationships.” European Journal of Soil Science 62: 105–116. 10.1111/j.1365-2389.2010.01314.x. DOI
Novinscak, A. , and Filion M.. 2011. “Effect of Soil Clay Content on RNA Isolation and on Detection and Quantification of Bacterial Gene Transcripts in Soil by Quantitative Reverse Transcription‐PCR.” Applied and Environmental Microbiology 77: 6249–6252. 10.1128/AEM.00055-11. PubMed DOI PMC
Oksanen, J. , Blanchet G., Friendly M., Kindt R., Legendre P., and McGlinn D.. 2021. “Vegan: Community Ecology Package R Version 2.6‐2.” https://CRAN.R‐project.org/package=vegan.
Parada, A. E. , Needham D. M., and Fuhrman J. A.. 2016. “Every Base Matters: Assessing Small Subunit rRNA Primers for Marine Microbiomes With Mock Communities, Time Series and Global Field Samples.” Environmental Microbiology 18, no. 5: 1403–1414. 10.1111/1462-2920.13023. PubMed DOI
Paulin, M. M. , Nicolaisen M. H., Jacobsen C. S., Gimsing A. L., Sørensen J., and Bælum J.. 2013. “Improving Griffith's Protocol for Co‐Extraction of Microbial DNA and RNA in Adsorptive Soils.” Soil Biology and Biochemistry 63: 37–49. 10.1016/j.soilbio.2013.02.007. DOI
Peng, J. , Wegner C.‐E., Bei Q., Liu P., and Liesack W.. 2018. “Metatranscriptomics Reveals a Differential Temperature Effect on the Structural and Functional Organization of the Anaerobic Food Web in Rice Field Soil.” Microbiome 6, no. 1: 169. 10.1186/s40168-018-0546-9. PubMed DOI PMC
Peng, J. , Zhou X., Rensing C., Liesack W., and Zhu Y.‐G.. 2024. “Soil Microbial Ecology Through the Lens of Metatranscriptomics.” Soil Ecology Letters 6, no. 3: 230217. 10.1007/s42832-023-0217-z. DOI
Petters, S. , Groß V., Söllinger A., et al. 2021. “The Soil Microbial Food Web Revisited: Predatory Myxobacteria as Keystone Taxa?” ISME Journal 15, no. 9: 2665–2675. 10.1038/s41396-021-00958-2. PubMed DOI PMC
Piwosz, K. , Shabarova T., Tomasch J., et al. 2018. “Determining Lineage‐Specific Bacterial Growth Curves With a Novel Approach Based on Amplicon Reads Normalization Using Internal Standard (ARNIS).” ISME Journal 12, no. 11: 2640–2654. 10.1038/s41396-018-0213-y. PubMed DOI PMC
Portillo, M. C. , Leff J. W., Lauber C. L., and Fierer N.. 2013. “Cell Size Distributions of Soil Bacterial and Archaeal Taxa.” Applied and Environmental Microbiology 79, no. 24: 7610–7617. 10.1128/AEM.02710-13. PubMed DOI PMC
Poursalavati, A. , Javaran J. V., Laforest‐Lapointe I., and Fall L. M.. 2023. “Soil Metatranscriptomics: An Improved RNA Extraction Method Toward Functional Analysis Using Nanopore Direct RNA Sequencing.” Phytobiomes Journal 7: 42–54. 10.1094/PBIOMES-12-22-0108-TA. DOI
R Core Team . 2024. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing, Vienna, Austria. https://www.R‐project.org/.
Schostag, M. , Priemé A., Jacquiod S., Russel J., Ekelund F., and Jacobsen C. S.. 2019. “Bacterial and Protozoan Dynamics Upon Thawing and Freezing of an Active Layer Permafrost Soil.” ISME Journal 13: 1345–1359. 10.1038/s41396-019-0351-x. PubMed DOI PMC
Shi, H. , Zhou Y., Jia E., Pan M., Bai Y., and Ge Q.. 2021. “Bias in RNA‐Seq Library Preparation: Current Challenges and Solutions.” BioMed Research International 2021: 1–11. 10.1155/2021/6647597. PubMed DOI PMC
Sigurdsson, B. D. , Leblans N. I. W., Dauwe S., et al. 2016. “Geothermal Ecosystems as Natural Climate Change Experiments: The ForHot Research Site in Iceland as a Case Study.” Icelandic Agricultural Sciences 29, no. 1: 53–71. 10.16886/IAS.2016.05. DOI
Söllinger, A. , Ahlers L. S., Dahl M. B., et al. 2024. “Microorganisms in Subarctic Soils Are Depleted of Ribosomes Under Short‐, Medium‐, and Long‐Term Warming.” ISME Journal 18: wrae081. 10.1093/ismejo/wrae081. PubMed DOI PMC
Söllinger, A. , Séneca J., Borg Dahl M., et al. 2022. “Down‐Regulation of the Bacterial Protein Biosynthesis Machinery in Response to Weeks, Years, and Decades of Soil Warming.” Science Advances 8, no. 12: eabm3230. 10.1126/sciadv.abm3230. PubMed DOI PMC
Söllinger, A. , Tveit A. T., Poulsen M., et al. 2018. “Holistic Assessment of Rumen Microbiome Dynamics Through Quantitative Metatranscriptomics Reveals Multifunctional Redundancy During Key Steps of Anaerobic Feed Degradation.” mSystems 3, no. 4: 1–19. PubMed PMC
Starr, E. P. , Nuccio E. E., Pett‐Ridge J., Banfield J. F., and Firestone M. K.. 2019. “Metatranscriptomic Reconstruction Reveals RNA Viruses With the Potential to Shape Carbon Cycling in Soil.” Proceedings of the National Academy of Sciences of the United States of America 116, no. 51: 25900–25908. 10.1073/pnas.1908291116. PubMed DOI PMC
Täumer, J. , Marhan S., Groß V., et al. 2022. “Linking Transcriptional Dynamics of CH4‐Cycling Grassland Soil Microbiomes to Seasonal Gas Fluxes.” ISME Journal 16, no. 7: 1788–1797. 10.1038/s41396-022-01229-4. PubMed DOI PMC
Thompson, L. R. , Sanders J. G., McDonald D., et al. 2017. “A Communal Catalogue Reveals Earth's Multiscale Microbial Diversity.” Nature 551, no. November: 457–463. 10.1038/nature24621. PubMed DOI PMC
Thorn, C. E. , Bergesch C., Joyce A., et al. 2019. “A Robust, Cost‐Effective Method for DNA, RNA and Protein Co‐Extraction From Soil, Other Complex Microbiomes and Pure Cultures.” Molecular Ecology Resources 19, no. 2: 439–455. 10.1111/1755-0998.12979. PubMed DOI
Tkacz, A. , Hortala M., and Poole P. S.. 2018. “Absolute Quantitation of Microbiota Abundance in Environmental Samples.” Microbiome 6: 110. 10.1186/s40168-018-0491-7. PubMed DOI PMC
Torsvik, V. , Øvreås L., and Thingstad T. F.. 2002. “Prokaryotic Diversity—Magnitude, Dynamics, and Controlling Factors.” Science 296, no. 5570: 1064–1066. 10.1126/science.1071698. PubMed DOI
Tveit, A. T. , Urich T., Frenzel P., and Svenning M. M.. 2015. “Metabolic and Trophic Interactions Modulate Methane Production by Arctic Peat Microbiota in Response to Warming.” Proceedings of the National Academy of Sciences of the United States of America 112, no. 19: E2507–E2516. 10.1073/pnas.1420797112. PubMed DOI PMC
Tveit, A. T. , Urich T., and Svenning M. M.. 2014. “Metatranscriptomic Analysis of Arctic Peat Soil Microbiota.” Applied and Environmental Microbiology 80, no. 18: 5761–5772. 10.1128/AEM.01030-14. PubMed DOI PMC
Urich, T. , Lanzén A., Qi J., Huson D. H., Schleper C., and Schuster S. C.. 2008. “Simultaneous Assessment of Soil Microbial Community Structure and Function Through Analysis of the Meta‐Transcriptome.” PLoS One 3, no. 6: e2527. 10.1371/journal.pone.0002527. PubMed DOI PMC
Vaulot, D. , Geisen S., Mahé F., and Bass D.. 2022. “pr2‐Primers: An 18S rRNA Primer Database for Protists.” Molecular Ecology Resources 22, no. 1: 168–179. 10.1111/1755-0998.13465. PubMed DOI
Verbrigghe, N. , Meeran K., Bahn M., et al. 2022. “Long‐Term Warming Reduced Microbial Biomass but Increased Recent Plant‐Derived C in Microbes of a Subarctic Grassland.” Soil Biology and Biochemistry 167: 108590. 10.1016/j.soilbio.2022.108590. DOI
Wang, H. , Jurasinski G., Täumer J., et al. 2023. “Linking Transcriptional Dynamics of Peat Microbiomes to Methane Fluxes During a Summer Drought in Two Rewetted Fens.” Environmental Science & Technology 57, no. 12: 5089–5101. 10.1021/acs.est.2c07461. PubMed DOI
Wang, Y. , Hayatsu M., and Fujii T.. 2012. “Extraction of Bacterial RNA From Soil: Challenges and Solutions.” Microbes and Environments 27, no. 2: 111–121. 10.1264/jsme2.ME11304. PubMed DOI PMC
Wasimuddin , Schlaeppi K., Ronchi F., Leib S. L., Erb M., and Ramette A.. 2020. “Evaluation of Primer Pairs for Microbiome Profiling From Soils to Humans Within the One Health Framework.” Molecular Ecology Resources 20, no. 6: 1558–1571. 10.1111/1755-0998.13215. PubMed DOI PMC
Wickham, H. 2007. “Reshaping Data With the Reshape Package.” Journal of Statistical Software 21, no. 12: 1–20. http://www.jstatsoft.org/v21/i12/.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer‐Verlag New York. ISBN 978‐3‐319‐24277‐4. https://ggplot2.tidyverse.org.
Wimmer, E. , Zink I. A., Hodgskiss L. H., Kerou M., and Schleper C.. 2024. “The Type III‐B CRISPR‐Cas System Affects Energy Metabolism and Adaptation in the Archaeon DOI
Yilmaz, P. , Kottmann R., Pruesse E., Quast C., and Glöckner F. O.. 2011. “Analysis of 23S rRNA Genes in Metagenomes—A Case Study From the Global Ocean Sampling Expedition.” Systematic and Applied Microbiology 34, no. 6: 462–469. 10.1016/j.syapm.2011.04.005. PubMed DOI
Yilmaz, P. , Parfrey L. W., Yarza P., et al. 2014. “The SILVA and “All‐Species Living Tree Project (LTP)” TAXONOMIC FRAMEWORKS.” Nucleic Acids Research 42, no. 1: D643–D648. 10.1093/nar/gkt1209. PubMed DOI PMC
Zhang, M. , Zhang L., Huang S., et al. 2022. “Assessment of Spike‐AMP and qPCR‐AMP in Soil Microbiota Quantitative Research.” Soil Biology and Biochemistry 166: 108570. 10.1016/j.soilbio.2022.108570. DOI
Zillig, W. , Stetter K. O., Wunderl S., Schulz W., Priess H., and Scholz I.. 1980. “The DOI