Polyploid evolution: The ultimate way to grasp the nettle
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31260474
PubMed Central
PMC6602185
DOI
10.1371/journal.pone.0218389
PII: PONE-D-19-02034
Knihovny.cz E-zdroje
- MeSH
- biologická evoluce * MeSH
- délka genomu MeSH
- ekosystém MeSH
- fyziologická adaptace genetika MeSH
- genom rostlinný * MeSH
- karyotypizace MeSH
- ploidie * MeSH
- selekce (genetika) MeSH
- Urtica dioica klasifikace genetika MeSH
- zeměpis MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
- západní Asie MeSH
Polyploidy is one of the major forces of plant evolution and widespread mixed-ploidy species offer an opportunity to evaluate its significance. We therefore selected the cosmopolitan species Urtica dioica (stinging nettle), examined its cytogeography and pattern of absolute genome size, and assessed correlations with bioclimatic and ecogeographic data (latitude, longitude, elevation). We evaluated variation in ploidy level using an extensive dataset of 7012 samples from 1317 populations covering most of the species' distribution area. The widespread tetraploid cytotype (87%) was strongly prevalent over diploids (13%). A subsequent analysis of absolute genome size proved a uniform Cx-value of core U. dioica (except for U. d. subsp. cypria) whereas other closely related species, namely U. bianorii, U. kioviensis and U. simensis, differed significantly. We detected a positive correlation between relative genome size and longitude and latitude in the complete dataset of European populations and a positive correlation between relative genome size and longitude in a reduced dataset of diploid accessions (the complete dataset of diploids excluding U. d. subsp. kurdistanica). In addition, our data indicate an affinity of most diploids to natural and near-natural habitats and that the tetraploid cytotype and a small part of diploids (population from the Po river basin in northern Italy) tend to inhabit synanthropic sites. To sum up, the pattern of ploidy variation revealed by our study is in many aspects unique to the stinging nettle, being most likely first of all driven by the greater ecological plasticity and invasiveness of the tetraploid cytotype.
Department of Botany Faculty of Science Charles University Prague Czech Republic
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Faculty of Environmental Sciences Czech University of Life Sciences Prague Prague Czech Republic
Institute of Botany The Czech Academy of Sciences Průhonice Czech Republic
Zobrazit více v PubMed
Grant V. Plant speciation. 1st ed New York: Columbia University Press; 1981.
Rieseberg LH, Willis JH. Plant speciation. Science. 2007;317(5840):1–9. 10.1126/science.1137729 PubMed DOI PMC
Symonds VV, Soltis PS, Soltis DE. Dynamics of polyploid formation in Tragopogon (Asteraceae): Recurrent formation, gene flow, and population structure. Evolution. 2010;64(7):1984–2003. 10.1111/j.1558-5646.2010.00978.x PubMed DOI
Renny-Byfield S, Wendel JF. Doubling down on genomes: Polyploidy and crop plants. Am J Bot. 2014;101(10):1711–1725. 10.3732/ajb.1400119 PubMed DOI
Jiao Y, Wickett NJ, Ayyampalayam S, Chanderbali AS, Landherr L, Ralph PE, et al. Ancestral polyploidy in seed plants and angiosperms. Nature. 2011;473:97–100. 10.1038/nature09916 PubMed DOI
Otto SP, Whitton J. Polyploid incidence and evolution. Annu Rev Genet. 2000;34(1):401–437. 10.1146/annurev.genet.34.1.401 PubMed DOI
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. The frequency of polyploid speciation in vascular plants. Proc Natl Acad Sci. 2009;106(33):13875–13879. 10.1073/pnas.0811575106 PubMed DOI PMC
Ohri D. Genome size variation and plant systematics. Ann Bot. 1998;82:75–83. 10.1006/anbo.1998.0765 DOI
Thompson JD, Lumaret R. The evolutionary dynamics of polyploid plants: origins, establishment and persistence. Trends Ecol Evol. 1992;7(9):302–307. 10.1016/0169-5347(92)90228-4 PubMed DOI
Wolfe KH. Yesterday’s polyploids and the mystery of diploidization. Nat Rev Genet. 2001;2:333–341. 10.1038/35072009 PubMed DOI
Mandáková T, Joly S, Krzywinski M, Mummenhoff K, Lysak MA. Fast diploidization in close mesopolyploid relatives of Arabidopsis. Plant Cell. 2010;22(7):2277–2290. 10.1105/tpc.110.074526 PubMed DOI PMC
Renny-Byfield S, Kovarik A, Kelly LJ, Macas J, Novak P, Chase MW, et al. Diploidization and genome size change in allopolyploids is associated with differential dynamics of low- and high-copy sequences. Plant J. 2013;74(5):829–839. 10.1111/tpj.12168 PubMed DOI
Soltis DE, Soltis PS, Tate JA. Advances in the study of polyploidy since Plant speciation. New Phytol. 2003;161(1):173–191. 10.1046/j.1469-8137.2003.00948.x DOI
Leitch IJ, Bennett MD. Genome downsizing in polyploid plants. Biol J Linn Soc. 2004;82(4):651–663. 10.1111/j.1095-8312.2004.00349.x DOI
Leitch IJ, Soltis DE, Soltis PS, Bennett MD. Evolution of DNA amounts across land plants (Embryophyta). Ann Bot. 2005;95(1):207–217. 10.1093/aob/mci014 PubMed DOI PMC
Rice A, Glick L, Abadi S, Einhorn M, Kopelman NM, Salman-Minkov A, et al. The Chromosome Counts Database (CCDB)—a community resource of plant chromosome numbers. New Phytol. 2015;206(1):19–26. 10.1111/nph.13191 PubMed DOI
Levin DA. The role of chromosomal change in plant evolution. New York: Oxford University Press; 2002.
Francis D, Davies MS, Barlow PW. A strong nucleotypic effect on the cell cycle regardless of ploidy level. Ann Bot. 2008;101(6):747–757. 10.1093/aob/mcn038 PubMed DOI PMC
Maherali H, Walden AE, Husband BC. Genome duplication and the evolution of physiological responses to water stress. New Phytol. 2009;184(3):721–731. 10.1111/j.1469-8137.2009.02997.x PubMed DOI
Ramsey J. Polyploidy and ecological adaptation in wild yarrow. Proc Natl Acad Sci. 2011;108(17):7096–7101. 10.1073/pnas.1016631108 PubMed DOI PMC
Madlung A. Polyploidy and its effect on evolutionary success: old questions revisited with new tools. Heredity. 2013;110(2):99–104. 10.1038/hdy.2012.79 PubMed DOI PMC
Lumaret R, Guillerm JL, Delay J, Ait Lhaj Loutfi A, Izco J, Jay M. Polyploidy and habitat differentiation in Dactylis glomerata L. from Galicia (Spain). Oecologia. 1987;73(3):436–446. 10.1007/BF00385262 PubMed DOI
Burnier J, Arrigo N, Küpfer P, Alvarez N. Genetic structure and evolution of Alpine polyploid complexes: Ranunculus kuepferi (Ranunculaceae) as a case study. Mol Ecol. 2009;18(17):3730–3744. 10.1111/j.1365-294X.2009.04281.x PubMed DOI
Treier UA, Broennimann O, Normand S, Guisan A, Schaffner U, Steinger T, et al. Shift in cytotype frequency and niche space in the invasive plant Centaurea maculosa. Ecology. 2009;90(5):1366–1377. 10.1890/08-0420.1 PubMed DOI
Salmon A, Ainouche ML, Wendel JF. Genetic and epigenetic consequences of recent hybridization and polyploidy in Spartina (Poaceae). Mol Ecol. 2005;14(4):1163–1175. 10.1111/j.1365-294X.2005.02488.x PubMed DOI
Cavanagh CR, Chao S, Wang S, Huang BE, Stephen S, Kiani S, et al. Genome-wide comparative diversity uncovers multiple targets of selection for improvement in hexaploid wheat landraces and cultivars. Proc Natl Acad Sci. 2013;110(20):8057–8062. 10.1073/pnas.1217133110 PubMed DOI PMC
Těšitelová T, Jersáková J, Roy M, Kubátová B, Těšitel J, Urfus T, et al. Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytol. 2013;199(4):1022–1033. 10.1111/nph.12348 PubMed DOI
Linder HP, Barker NP. Does polyploidy facilitate long-distance dispersal? Ann Bot. 2014;113(7):1175–1183. 10.1093/aob/mcu047 PubMed DOI PMC
Rosche C, Hensen I, Lachmuth S. Local pre-adaptation to disturbance and inbreeding-environment interactions affect colonisation abilities of diploid and tetraploid Centaurea stoebe. Plant Biol. 2018;20(1):75–84. 10.1111/plb.12628 PubMed DOI
Rosche C, Hensen I, Mráz P, Durka W, Hartmann M, Lachmuth S. Invasion success in polyploids: the role of inbreeding in the contrasting colonization abilities of diploid versus tetraploid populations of Centaurea stoebe s.l. J Ecol. 2017;105(2):425–435. 10.1111/1365-2745.12670 DOI
Schlaepfer DR, Edwards PJ, Semple JC, Billeter R. Cytogeography of Solidago gigantea (Asteraceae) and its invasive ploidy level. J Biogeogr. 2008;35(11):2119–2127. 10.1111/j.1365-2699.2008.01937.x DOI
Španiel S, Marhold K, Hodálova I, Lihová J. Diploid and tetraploid cytotypes of Centaurea stoebe (Asteraceae) in Central Europe: Morphological differentiation and cytotype distribution patterns. Folia Geobot. 2008;43(2):131–158. 10.1007/s12224-008-9008-7 DOI
Mráz P, Bourchier RS, Treier UA, Schaffner U, Müller-Schärer H. Polyploidy in phenotypic space and invasion context: a morphometric study of Centaurea stoebe s.l. Int J Plant Sci. 2011;172(3):386–402. 10.1086/658151 DOI
Zozomová-Lihová J, Malánová-Krásná I, Vít P, Urfus T, Senko D, Svitok M, et al. Cytotype distribution patterns, ecological differentiation, and genetic structure in a diploid-tetraploid contact zone of Cardamine amara. Am J Bot. 2015;102(8):1380–1395. 10.3732/ajb.1500052 PubMed DOI
Baduel P, Arnold B, Weisman CM, Hunter B, Bomblies K. Habitat-associated life history and stress-tolerance variation in Arabidopsis arenosa. Plant Physiol. 2016;171(1):437–451. 10.1104/pp.15.01875 PubMed DOI PMC
Pandit MK, Pocock MJO, Kunin WE. Ploidy influences rarity and invasiveness in plants. J Ecol. 2011;99(5):1108–1115. 10.1111/j.1365-2745.2011.01838.x DOI
te Beest M, Le Roux JJ, Richardson DM, Brysting AK, Suda J, Kubešová M, et al. The more the better? The role of polyploidy in facilitating plant invasions. Ann Bot. 2012;109(1):19–45. 10.1093/aob/mcr277 PubMed DOI PMC
Husband BC, Sabara HA. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytol. 2003;161(3):703–713. 10.1046/j.1469-8137.2004.00998.x PubMed DOI
Kao RH. Asexuality and the coexistence of cytotypes. New Phytol. 2007;175(4):764–772. 10.1111/j.1469-8137.2007.02145.x PubMed DOI
Sonnleitner M, Flatscher R, Escobar García P, Rauchová J, Suda J, Schneeweiss GM, et al. Distribution and habitat segregation on different spatial scales among diploid, tetraploid and hexaploid cytotypes of Senecio carniolicus (Asteraceae) in the Eastern Alps. Ann Bot. 2010;106(6):967–977. 10.1093/aob/mcq192 PubMed DOI PMC
Kolář F, Čertner M, Suda J, Schönswetter P, Husband BC. Mixed-ploidy species: progress and opportunities in polyploid research. Trends Plant Sci. 2017;22(12):1041–1055. 10.1016/j.tplants.2017.09.011 PubMed DOI
Lafuma L, Balkwill K, Imbert E, Verlaque R, Maurice S. Ploidy level and origin of the European invasive weed Senecio inaequidens (Asteraceae). Plant Syst Evol. 2003;243(1-2):59–72. 10.1007/s00606-003-0075-0 DOI
Buggs RJA, Pannell JR. Ecological differentiation and diploid superiority across a moving ploidy contact zone. Evolution. 2007;61(1):125–140. 10.1111/j.1558-5646.2007.00010.x PubMed DOI
Obbard DJ, Harris SA, Buggs RJA, Pannell JR. Hybridization, polyploidy, and the evolution of sexual systems in Mercurialis (Euphorbiaceae). Evolution. 2006;60(9):1801 10.1554/06-104.1 PubMed DOI
Čertner M, Fenclová E, Kúr P, Kolář F, Koutecký P, Krahulcová A, et al. Evolutionary dynamics of mixed-ploidy populations in an annual herb: dispersal, local persistence and recurrent origins of polyploids. Ann Bot. 2017;120(2):303–315. 10.1093/aob/mcx032 PubMed DOI PMC
Bredemann G, Garber K. Die grosse Brennessel Urtica dioica L: Forschungen über ihren Anbau zur Fasergewinnung. Berlin: Akademie-Verlag; 1959.
Bacci L, Baronti S, Predieri S, di Virgilio N. Fiber yield and quality of fiber nettle (Urtica dioica L.) cultivated in Italy. Ind Crops Prod. 2009;29(2-3):480–484. 10.1016/j.indcrop.2008.09.005 DOI
Di Virgilio N, Papazoglou EG, Jankauskiene Z, Di Lonardo S, Praczyk M, Wielgusz K. The potential of stinging nettle (Urtica dioica L.) as a crop with multiple uses. Ind Crops Prod. 2015;68:42–49. 10.1016/j.indcrop.2014.08.012 DOI
Farzami B, Ahmadvand D, Vardasbi S, Majin FJ, Khaghani S. Induction of insulin secretion by a component of Urtica dioica leave extract in perifused Islets of Langerhans and its in vivo effects in normal and streptozotocin diabetic rats. J Ethnopharmacol. 2003;89(1):47–53. 10.1016/S0378-8741(03)00220-4 PubMed DOI
Mohammadi A, Mansoori B, Aghapour M, Baradaran B. Urtica dioica dichloromethane extract induce apoptosis from intrinsic pathway on human prostate cancer cells (PC3). Cell Mol Biol. 2016;62(3):78–83. PubMed
Olsen C. The Ecology of Urtica dioica. J Ecol. 1921;9(1):1 10.2307/2255757 DOI
Ivins J. Concerning the Ecology of Urtica dioica L. J Ecol. 1952;40(2):380 10.2307/2256806 DOI
Pagad S, Genovesi P, Carnevali L, Schigel D, McGeoch MA. Introducing the Global Register of Introduced and Invasive Species. Sci Data. 2018;5:170202 10.1038/sdata.2017.202 PubMed DOI PMC
Domin K. Monografická studie o kopřivě dvoudomé (Urtica dioica L.)—1. pokračování. Časopis čes lékárnictva. 1944;57:59–75.
Domin K. Monografická studie o kopřivě dvoudomé (Urtica dioica L.). Časopis čes lékárnictva. 1944;3:92–94.
Grosse-Veldmann B, Weigend M. Weeding the nettles III: Named nonsense versus named morphotypes in European Urtica dioica L. (Urticaceae). Phytotaxa. 2015;208(4):239 10.11646/phytotaxa.208.4.1 DOI
Grosse-Veldmann B, Weigend M. The geometry of gender: hyper-diversification of sexual systems in Urtica L. (Urticaceae). Cladistics. 2018;34(2):131–150. 10.1111/cla.12193 PubMed DOI
Geltman D. On the chromosome numbers of Urtica dioica s. l. (Urticaceae)—(On the basis of the material from the middle zone of the European part of the SSSR). Bot Zhurn. 1981;67:788–792.
Jonsell B, editor. Flora Nordica. Volume 1: Lycopodiaceae—Polygonaceae vol. 1 Stockholm: Bergius Foundation; 2000.
Lippert W. Chromosomenzahlen von Pflanzen aus Bayern und anderen Gebieten. Berichte Bayer Bot Ges. 2006;76:85–110.
Löve A, Löve D. Chromosome numbers of central and northwest European plant species. Stockholm: Almqvist & Wiksell; 1961.
Löve A, Löve D. Chromosome numbers of northern plant species. No. No. 3 in Reports, Ser. B. Reykjavik: University Institute of Applied Science, Dept. of Agriculture; 1948.
Mráz P. Chromosome number and DNA ploidy level reports from Central Europe—2. Biologia (Bratisl). 2006;61(1):115–120.
Tropicos.org. Missouri Botanical Garden.; 2018 [cited 2018 Dec 4]. Database: [Internet]. Available from: http://www.tropicos.org/Name/33400020?tab=chromosomecounts.
Farag MA, Weigend M, Luebert F, Brokamp G, Wessjohann LA. Phytochemical, phylogenetic, and anti-inflammatory evaluation of 43 Urtica accessions (stinging nettle) based on UPLC–Q-TOF-MS metabolomic profiles. Phytochemistry. 2013;96:170–183. 10.1016/j.phytochem.2013.09.016 PubMed DOI
Wu ZY, Monro AK, Milne RI, Wang H, Yi TS, Liu J, et al. Molecular phylogeny of the nettle family (Urticaceae) inferred from multiple loci of three genomes and extensive generic sampling. Mol Phylogenet Evol. 2013;69(3):814–827. 10.1016/j.ympev.2013.06.022 PubMed DOI
Henning T, Quandt D, Grosse-Veldmann B, Monro A, Weigend M. Weeding the Nettles II: A delimitation of Urtica dioica L. (Urticaceae) based on morphological and molecular data, including a rehabilitation of Urtica gracilis Ait. Phytotaxa. 2014;162(2):61 10.11646/phytotaxa.162.2.1 DOI
Grosse-Veldmann B, Nürk NM, Smissen R, Breitwieser I, Quandt D, Weigend M. Pulling the sting out of nettle systematics—A comprehensive phylogeny of the genus Urtica L. (Urticaceae). Mol Phylogenet Evol. 2016;102:9–19. 10.1016/j.ympev.2016.05.019 PubMed DOI
Chrtek J. Urticaceae. In: Rechinger KH, editor. Flora Iranica: Flora des iranischen Hochlandes und der umrahmenden Gebirge: Persien, Afganistan, Teile von West-Pakistan, Nord-Iraq, Azerbaidjan, Turkmenistan. Ht. 105: Urticaceae. vol. 105. Graz: Akademische Druck- u. Verlagsanstalt; 1974. p. 1–20.
Townsend CC, Guest E, editors. Flora of Iraq. Vol. III: Leguminales. vol. 3 Baghdad: Ministry of Agriculture of the Republic of Iraq; 1974.
Weigend M. Die Erben Pokornys—Ein Beitrag zur Abgrenzung der Sippen Urtica galeopsofolia und Urtica pubescens in Mittel- und Osteuropa. Hoppea, Denkschr Regensb Bot Ges. 2005;66:101–118.
Weigend M. Urtica dioica subsp. cypria, with a re-evaluation of the U. dioica group (Urticaceae) in western Asia. Willdenowia. 2006;36(2):811–822. 10.3372/wi.36.36212 DOI
Geltman D. New sections and subsections of the genus Urtica (Urticaceae). Bot Zhurn. 1982;67:1413–1416.
Simmons HG. Floran och vegetationen i Kiruna: en växtgeografisk studie med särskild hänsyn till kulturens inflytande Vetenskapliga och praktiska undersökningar i Lappland. Stockholm: Nordiska bokhandeln i distribution; 1910.
Pollard AJ, Briggs D. Genecological studies of Urtica dioica L. I. The nature of intraspecific variation in U. dioica. New Phytol. 1982;92(3):453–470. 10.1111/j.1469-8137.1982.tb03403.x DOI
Meikle RD. Flora of Cyprus. Vol. II. Kew: Bentham Moxon Trust, Royal Botanic Gardens; 1985.
Suda J, Trávníček P. Reliable DNA ploidy determination in dehydrated tissues of vascular plants by DAPI flow cytometry—new prospects for plant research. Cytom Part A. 2006;69A(4):273–280. 10.1002/cyto.a.20253 PubMed DOI
Doležel J, Greilhuber J, Suda J. Estimation of nuclear DNA content in plants using flow cytometry. Nat Protoc. 2007;2(9):2233–2244. 10.1038/nprot.2007.310 PubMed DOI
Schönswetter P, Suda J, Popp M, Weiss-Schneeweiss H, Brochmann C. Circumpolar phylogeography of Juncus biglumis (Juncaceae) inferred from AFLP fingerprints, cpDNA sequences, nuclear DNA content and chromosome numbers. Mol Phylogenet Evol. 2007;42(1):92–103. 10.1016/j.ympev.2006.06.016 PubMed DOI
Doležel J, Binarová P, Lucretti S. Analysis of Nuclear DNA content in plant cells by Flow cytometry. Biol Plant. 1989;31(2):113–120. 10.1007/BF02907241 DOI
A language and environment for statistical computing R Foundation for statistical computing, Vienna, Austria [Internet]. R Core Team; 2018. Available from: https://www.R-project.org/.
Mandáková T, Lysak MA. Chromosome preparation for cytogenetic analyses in Arabidopsis In: Stacey G, Birchler J, Ecker J, Martin CR, Stitt M, Zhou JM, editors. Current protocols in plant biology. Hoboken, NJ, USA: John Wiley & Sons, Inc.; 2016. p. 43–51. Available from: http://doi.wiley.com/10.1002/cppb.20009. PubMed DOI
Chumová Z, Záveská E, Mandáková T, Krak K, Trávníček P. The Mediterranean: the cradle of Anthoxanthum (Poaceae) diploid diversity. Ann Bot. 2017;120(2):285–302. 10.1093/aob/mcx021 PubMed DOI PMC
Aiello-Lammens ME, Boria RA, Radosavljevic A, Vilela B, Anderson RP. spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models. Ecography. 2015;38(5):541–545. 10.1111/ecog.01132 DOI
Hijmans RJ, Graham CH. The ability of climate envelope models to predict the effect of climate change on species distributions. Global change biol. 2006;12(12):2272–2281. 10.1111/j.1365-2486.2006.01256.x DOI
Koutecký P. MorphoTools: a set of R functions for morphometric analysis. Plant Syst Evol. 2015;301(4):1115–1121. 10.1007/s00606-014-1153-2 DOI
Tüxen R, Preising E. Die heutige potentielle natürliche Vegetation als Gegenstand der Vegetationskartierung. Angewandte Pflanzensoziologie. Stolzenau (Weser): Selbstverl. d. Bundesanst. für Vegetationskartierung; 1956.
Agresti A. Introduction to categorical data analysis Second edition ed. Wiley series in probability and statistics. Department of Statistics, University of Florida Gainesville, Florida: John Wiley & Sons, Inc.; 2007.
Ramsey J, Ramsey TS. Ecological studies of polyploidy in the 100 years following its discovery. Philos Trans R Soc B Biol Sci. 2014;369(1648):20130352 10.1098/rstb.2013.0352 PubMed DOI PMC
Hegi G. Illustrierte Flora von Mittel-Europa: mit besonderer Berücksichtigung von Deutschland, Oesterreich und der Schweiz: zum Gebrauche in den Schulen und zum Selbstunterricht. III. Band, I. Teil: Dicotyledones. 1st ed. München: J. F. Lehmann; 1912.
Zólyomi B. Urtica kioviensis Rogowitsch neu für die Deutsche Flora. Verh Bot Ver Prov Brandenburg. 1936;76:152–156.
Tutin TG, editor. Flora Europaea. Vol. 1: Lycopodiaceae to Platanaceae. vol. 1 Cambridge: Cambridge University Press; 1964.
Pignatti S. Flora d’Italia. vol. 1 Bologna: Edagricole; 1982.
Paiva J. LXIV. Urticaceae. In: Paiva J, Castroviejo S, editors. Flora Iberica: plantas vasculares de la Península Ibérica e Islas Baleares. Vol. III: Plumbaginaceae (partim)—Capparaceae. vol. 3. Madrid: Real Jardín Botánico de Madrid; 1993. p. 262–268.
Danihelka J, Lepší M. Kopřiva lužní, Urtica kioviensis, na soutoku Moravy a Dyje. Zprávy Čes Bot Spol. 2004;39:25–35.
Moreno M. Urticaceae In: Valdés B, Talavera S, Galiano EF, editors. Flora Vascular de Andalucía Occidental. vol. 1 Barcelona: Ketres Editora; 1987. p. 154–156.
Cabezudo B. Urticaceae In: Torres C, Salazar C, editors. Flora Vascular de Andalucía Oriental. 2nd ed Granada: Universidades de Almería; 2011. p. 913–914.
Darlington CD, Wylie AP. Chromosome atlas of flowering plants. 2nd ed London: G. Allen & Unwin; 1955.
Bolchovskich ZV. Chromosomnyje čisla cvetkovych rastenij. Leningrad: Akademija nauk SSSR, Nauka; 1969.
Marhold K, editor. Chromosome number survey of the ferns and flowering plants of Slovakia. Bratislava: Veda; 2007.
Tischler G. Die Chromosomenzahlen der Gefässpflanzen Mitteleuropas. Den Haag: W. Junk; 1950.
Májovský J, Murín A. Karyotaxonomický prehlad flóry Slovenska. Bratislava: Veda; 1987.
Loureiro J, Trávníček P, Rauchová J, Urfus T, Vít P, Štech M, et al. The use of flow cytometry in the biosystematisc, ecology and population biology of homoploid plants. Preslia. 2010;82:3–21.
Ramsey J, Schemske DW. Pathways, Mechanisms, and rates of polyploid formation in flowering plants. Ann Rev of Ecol and Syst. 1998;29(1):467–501. 10.1146/annurev.ecolsys.29.1.467 DOI
Kreiner JM, Kron P, Husband BC. Frequency and maintenance of unreduced gametes in natural plant populations: associations with reproductive mode, life history and genome size. New Phytol. 2017;214(2):879–889. 10.1111/nph.14423 PubMed DOI
Burton TL, Husband B. Fitness differences among diploids, tetraploids, and their triploid progeny in Chamerion angustifolium: mechanisms of iniviability and implications for polyploid evolution. Evolution. 2000;54(4):1182–1191. 10.1111/j.0014-3820.2000.tb00553.x PubMed DOI
Douda J, Boublík K, Slezák M, Biurrun I, Nociar J, Havrdová A, et al. Vegetation classification and biogeography of European floodplain forests and alder carrs. Appl Veg Sci. 2016;19(1):147–163. 10.1111/avsc.12201 DOI
Roberts N, Fyfe RM, Woodbridge J, Gaillard MJ, Davis BaS, Kaplan JO, et al. Europe’s lost forests: a pollen-based synthesis for the last 11,000 years. Sci Rep. 2018;8(1):716 10.1038/s41598-017-18646-7 PubMed DOI PMC
Nassar NMA. Production of triploid cassava, Manihot esculenta Crantz by hybrid diploid gametes. Field Crops Res. 1992;30(1-2):173–182. 10.1016/0378-4290(92)90066-I DOI
Nassar NMA. The synthesis of a new cassava-derived species, Manihot vieiri Nassar. Genet Mol Res. 2006;5(3):536–541. PubMed
Pustovoitova T, Eremin G, Rassvetaeva E, Zhdanova N, Zholkevich V. Drought resistance, recovery capacity, and phytohormone content in polyploid plum leaves. Russ J Plant Physiol. 1996;43(2):232–235.
Rothera SL, Davy AJ. Polyploidy and habitat differentiation in Deschampsia cespitosa. New Phytol. 1986;102(3):449–467. 10.1111/j.1469-8137.1986.tb00822.x DOI
Stebbins GL, Singh R. Artificial and natural hybrids in the Gramineae, tribe Hordeae IV. Two triploid hybrids of Agropyron and Elymus. 1950; p. 7.
Brochmann C, Brysting AK, Alsos IG, Borgen L, Grundt HH, Scheen AC, et al. Polyploidy in arctic plants. Biol J Linn Soc. 2004;82(4):521–536. 10.1111/j.1095-8312.2004.00337.x DOI
Weiss-Schneeweiss H, Emadzade K, Jang TS, Schneeweiss GM. Evolutionary consequences, constraints and potential of polyploidy in plants. Cytogenet Genome Res. 2013;140(2-4):137–150. 10.1159/000351727 PubMed DOI PMC
Chumová Z, Krejčíková J, Mandáková T, Suda J, Trávníček P. Evolutionary and taxonomic implications of variation in nuclear genome size: lesson from the grass genus Anthoxanthum (Poaceae). Plos One. 2015;10(7):e0133748 10.1371/journal.pone.0133748 PubMed DOI PMC
Geltman D. Some problems of phylogeny of the species of the subsection Urtica of the genus Urtica (Urticaceae). Bot Zhurn. 1990;75:840–845.
Otisková V, Koutecký T, Kolář F, Koutecký P. Occurrence and habitat preferences of diploid and tetraploid cytotypes of Centaurea stoebe in the Czech Republic. Preslia. 2014;86:67–80.
Němečková H, Krak K, Chrtek J. Complex pattern of ploidal and genetic variation in Seseli libanotis (Apiaceae). Ann Bot Fenn. 2019;56:57–77. 10.5735/085.056.0111 DOI
Suda J, Meyerson LA, Leitch IJ, Pyšek P. The hidden side of plant invasions: the role of genome size. New Phytol. 2015;205(3):994–1007. 10.1111/nph.13107 PubMed DOI
Große-Veldmann B. Systematics, taxonomy, and evolution of Urtica L. (Urticaceae); 2016. Available from: http://hss.ulb.uni-bonn.de/2017/4628/4628.pdf.
Yan H, Martin SL, Bekele WA, Latta RG, Diederichsen A, Peng Y, et al. Genome size variation in the genus Avena. Genome. 2016;59(3):209–220. 10.1139/gen-2015-0132 PubMed DOI
Vít P, Krak K, Trávníček P, Douda J, Lomonosova MN, Mandák B. Genome size stability across Eurasian Chenopodium species (Amaranthaceae). Bot J Linn Soc. 2016;182(3):637–649. 10.1111/boj.12474 DOI
Baack EJ, Whitney KD, Rieseberg LH. Hybridization and genome size evolution: timing and magnitude of nuclear DNA content increases in Helianthus homoploid hybrid species. New Phytol. 2005;167(2):623–630. PubMed PMC
James JK, Abbott RJ. Recent, allopatric, homoploid hybrid speciation: The origin of Senecio squalidus (Asteraceae) in the British Isles from a hybrid zone on Mount Etna, Sicily. Evolution. 2005;59(12):2533–2547. 10.1554/05-306.1 PubMed DOI
Frajman B, Eggens F, Oxelman B. Hybrid origins and homoploid reticulate evolution within Heliosperma (Sileneae, Caryophyllaceae)—A multigene phylogenetic approach with relative dating. Syst Biol. 2009;58(3):328–345. 10.1093/sysbio/syp030 PubMed DOI
Geltman D. Cytotaxonomical studies of the species of the genus Urtica (Urticaceae) in Flora of the USSR. Bot Zhurn. 1984;69:1524–1530.
Geltman D. Genus Urtica L. (Urticaceae) in the URSS. Nov System Plant Vasc. 1988;25:68–80.
Schönswetter P, Stehlik I, Holderegger R, Tribsch A. Molecular evidence for glacial refugia of mountain plants in the European Alps. Mol Ecol. 2005;14(11):3547–3555. 10.1111/j.1365-294X.2005.02683.x PubMed DOI
Magri D. Patterns of post-glacial spread and the extent of glacial refugia of European beech (Fagus sylvatica). J Biogeogr. 2008;35(3):450–463. 10.1111/j.1365-2699.2007.01803.x DOI
Schmitt T. Biogeographical and evolutionary importance of the European high mountain systems. Front Zool. 2009;6(1):9 10.1186/1742-9994-6-9 PubMed DOI PMC
Kühne G, Kosuch J, Hochkirch A, Schmitt T. Extra-Mediterranean glacial refugia in a Mediterranean faunal element: the phylogeography of the chalk-hill blue Polyommatus coridon (Lepidoptera, Lycaenidae). Sci Rep. 2017;7:43533 10.1038/srep43533 DOI
Taberlet P, Fumagalli L, Wust-Saucy AG, Cosson JF. Comparative phylogeography and postglacial colonization routes in Europe. Mol Ecol. 1998;7(4):453–464. 10.1046/j.1365-294x.1998.00289.x PubMed DOI
Hewitt GM. Speciation, hybrid zones and phylogeography: seeing genes in space and time. Mol Ecol. 2008;10(3):537–549. 10.1046/j.1365-294x.2001.01202.x PubMed DOI
Erinc S. Changes in the physical environment in Turkey since the end of the Last Glacial In: Brice WC, editor. The Environmental history of the Near and Middle East since the last ice age; 1978. p. 67–81.
Atalay I. Palaeosols as indicators of the climatic changes during Quaternary period in S. Anatolia. J Arid Environ. 1996;32(1):23–35. 10.1006/jare.1996.0003 DOI
Weeb T, Bartlein PJ. Global changes during the last 3 million years: climatic controls and biotic responses. Ann Rev Ecol Syst. 1992;23:141–173. 10.1146/annurev.es.23.110192.001041 DOI