Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae)
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
23731358
DOI
10.1111/nph.12348
Knihovny.cz E-zdroje
- Klíčová slova
- Orchidaceae, Tulasnellaceae, cytotype co-existence, mycorrhiza, niche partitioning, plant-fungus interactions, polyploidy,
- MeSH
- biodiverzita * MeSH
- mykorhiza fyziologie MeSH
- Orchidaceae růst a vývoj mikrobiologie MeSH
- ploidie * MeSH
- semenáček mikrobiologie MeSH
- symbióza fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Polyploidy is widely recognized as a major mechanism of sympatric speciation in plants, yet little is known about its effects on interactions with other organisms. Mycorrhizal fungi are among the most common plant symbionts and play an important role in plant nutrient supply. It remains to be understood whether mycorrhizal associations of ploidy-variable plants can be ploidy-specific. We examined mycorrhizal associations in three cytotypes (2x, 3x, 4x) of the Gymnadenia conopsea group (Orchidaceae), involving G. conopsea s.s. and G. densiflora, at different spatial scales and during different ontogenetic stages. We analysed: adults from mixed- and single-ploidy populations at a regional scale; closely spaced adults within a mixed-ploidy site; and mycorrhizal seedlings. All Gymnadenia cytotypes associated mainly with saprotrophic Tulasnellaceae (Basidiomycota). Nonetheless, both adults and seedlings of diploids and their autotetraploid derivatives significantly differed in the identity of their mycorrhizal symbionts. Interploidy segregation of mycorrhizal symbionts was most pronounced within a site with closely spaced adults. This study provides the first evidence that polyploidization of a plant species can be associated with a shift in mycorrhizal symbionts. This divergence may contribute to niche partitioning and facilitate establishment and co-existence of different cytotypes.
Faculty of Science University of South Bohemia Branišovská 31 České Budějovice 370 05 Czech Republic
Institute of Botany Academy of Sciences of the Czech Republic Průhonice 1 252 43 Czech Republic
Zobrazit více v PubMed
Arvanitis L, Wiklund C, Münzbergová Z, Dahlgren JP, Ehrlén J. 2010. Novel antagonistic interactions associated with plant polyploidization influence trait selection and habitat preference. Ecology Letters 13: 330-337.
Bateman RM, Hollingsworth PM, Preston J, Yi-Bo L, Pridgeon AM, Chase MW. 2003. Molecular phylogenetics and evolution of Orchidinae and selected Habenariinae (Orchidaceae). Botanical Journal of the Linnean Society 142: 1-40.
Bidartondo MI, Bruns TD. 2005. On the origins of extreme mycorrhizal specificity in the Monotropoideae (Ericaceae): performance trade-offs during seed germination and seedling development. Molecular Ecology 14: 1549-1560.
Brundrett MC. 2009. Mycorrhizal associations and other means of nutrition of vascular plants: understanding the global diversity of host plants by resolving conflicting information and developing reliable means of diagnosis. Plant and Soil 320: 37-77.
Cameron DD, Leake JR, Read DJ. 2006. Mutualistic mycorrhiza in orchids: evidence from plant-fungus carbon and nitrogen transfers in the green-leaved terrestrial orchid Goodyera repens. New Phytologist 171: 405-416.
Coyne JA, Orr HA. 2004. Speciation. Sunderland, MA, USA: Sinauer Associates.
Dearnaley JDW, Martos F, Selosse M-A. 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, ed. Fungal associations, vol. IX, The Mycota, 2nd edn. Berlin, Germany: Springer-Verlag, 207-230.
Gardes M, Bruns TD. 1993. ITS primers with enhanced specificity for basidiomycetes-application to the identification of mycorrhizae and rusts. Molecular Ecology 2: 113-118.
Hall T. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series 41: 95-98.
Herrera P, Suárez JP, Kottke I. 2010. Orchids keep the ascomycetes outside: a highly diverse group of ascomycetes colonizing the velamen of epiphytic orchids from a tropical mountain rainforest in Southern Ecuador. Mycology 1: 262-268.
Huelsenbeck JP, Ronquist F. 2001. MRBAYES: bayesian inference of phylogenetic trees. Bioinformatics 17: 754-755.
Hughes KW, Petersen RH, Lickey EB. 2009. Using heterozygosity to estimate a percentage DNA sequence similarity for environmental species' delimitation across basidiomycete fungi. New Phytologist 182: 795-798.
Husband BC, Baldwin SJ, Suda J. 2013. The incidence of polyploidy in natural plant populations: major patterns and evolutionary processes. In: Greilhuber J, Dolezel J, Wendel JF, eds. Plant genome diversity, vol. 2.Vienna, Austria: Springer-Verlag, 255-276.
Husband BC, Sabara HA. 2004. Reproductive isolation between autotetraploids and their diploid progenitors in fireweed, Chamerion angustifolium (Onagraceae). New Phytologist 161: 703-713.
Jacquemyn H, Brys R, Honnay O, Roldan-Ruiz I, Lievens B, Wiegand T. 2012a. Nonrandom spatial structuring of orchids in a hybrid zone of three Orchis species. New Phytologist 193: 454-464.
Jacquemyn H, Brys R, Lievens B, Wiegand T. 2012b. Spatial variation in below-ground seed germination and divergent mycorrhizal associations correlate with spatial segregation of three co-occurring orchid species. Journal of Ecology 100: 1328-1337.
Jacquemyn H, Deja A, De Hert K, Bailarote BC, Lievens B. 2012c. Variation in mycorrhizal associations with tulasnelloid fungi among populations of five Dactylorhiza species. PLoS ONE 7: e42212.
Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B. 2010. Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology 19: 4086-4095.
Jersáková J, Castro S, Sonk N, Milchreit K, Schödelbauerová I, Tolasch T, Dötterl S. 2010. Absence of pollinator-mediated premating barriers in mixed-ploidy populations of Gymnadenia conopsea s.l. (Orchidaceae). Evolutionary Ecology 24: 1199-1218.
Jersáková J, Malinová T. 2007. Spatial aspects of seed dispersal and seedling recruitment in orchids. New Phytologist 176: 237-241.
Katoh K, Kuma K, Toh H, Miyata T. 2005. MAFFT version 5: improvement in accuracy of multiple sequence alignment. Nucleic Acids Research 33: 511-518.
Kohout P, Těšitelová T, Roy M, Vohník M, Jersáková J. 2013. A diverse fungal community associated with Pseudorchis albida (Orchidaceae) roots. Fungal Ecology 6: 50-64.
Leitch AR, Leitch IJ. 2012. Ecological and genetic factors linked to contrasting genome dynamics in seed plants. New Phytologist 194: 629-646.
Levin DA. 1975. Minority cytotype exclusion in local plant populations. Taxon 24: 35-43.
Levin DA. 2002. The role of chromosomal change in plant evolution. Oxford, UK: Oxford University Press.
Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse M-A. 2012. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Molecular Ecology 21: 5098-5109.
Masuhara G, Katsuya K. 1994. In situ and in vitro specificity between Rhizoctonia spp. and Spiranthes sinensis (Persoon) Ames. var amoena (M. Bieberstein) Hara (Orchidaceae). New Phytologist 127: 711-718.
McCormick MK, Whigham DF, O'Neill J. 2004. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist 163: 425-438.
McKendrick SL, Leake JR, Taylor DL, Read DJ. 2002. Symbiotic germination and development of the myco-heterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytologist 154: 233-247.
Meekers T, Hutchings MJ, Honnay O, Jacquemyn H. 2012. Biological flora of the British Isles: Gymnadenia conopsea s.l. Journal of Ecology 100: 1269-1288.
Milne I, Wright F, Rowe G, Marshall DF, Husmeier D, McGuire G. 2004. TOPALi: software for automatic identification of recombinant sequences within DNA multiple alignments. Bioinformatics 20: 1806-1807.
Montesinos-Navarro A, Segarra-Moragues JG, Valiente-Banuet A, Verdú M. 2012. Plant facilitation occurs between species differing in their associated arbuscular mycorrhizal fungi. New Phytologist 196: 835-844.
Morris MH, Smith ME, Rizzo DM, Rejmánek M, Bledsoe CS. 2008. Contrasting ectomycorrhizal fungal communities on the roots of co-occurring oaks (Quercus spp.) in a California woodland. New Phytologist 178: 167-176.
Münzbergová Z. 2006. Ploidy level interacts with population size and habitat conditions to determine the degree of herbivory damage in plant populations. Oikos 115: 443-452.
Nikolcheva LG, Bärlocher F. 2004. Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycological Progress 3: 41-49.
Oksanen J, Blanchet FG, Kindt R, Legendre P, O'Hara RB, Simpson GL, Solymos P, Stevens MHH, Wagner H. 2011. vegan: community ecology package. [WWW document] URL.http://CRAN.R-project.org/package=vegan [accessed on 20 February 2011].
Otero JT, Flanagan NS, Herre EA, Ackerman JD, Bayman P. 2007. Widespread mycorrhizal specificity correlates to mycorrhizal function in the neotropical, epiphytic orchid Ionopsis utricularioides (Orchidaceae). American Journal of Botany 94: 1944-1950.
Parisod C, Holderegger R, Brochmann C. 2010. Evolutionary consequences of autopolyploidy. New Phytologist 186: 5-17.
Petit C, Bretagnolle F, Felber F. 1999. Evolutionary consequences of diploid-polyploid hybrid zones in wild species. Trends in Ecology and Evolution 14: 306-311.
Phillips RD, Barrett MD, Dixon KW, Hopper SD. 2011. Do mycorrhizal symbioses cause rarity in orchids? Journal of Ecology 99: 858-869.
Pridgeon AM, Cribb PJ, Chase MW, Rasmussen FN. 1999. Genera Orchidacearum, vol. 1: Apostasioideae and Cypripedioideae.Oxford, UK: Oxford University Press.
Rasmussen HN, Rasmussen FN. 2009. Orchid mycorrhiza: implications of a mycophagous life style. Oikos 118: 334-345.
Rasmussen HN, Whigham DF. 1993. Seed ecology of dust seeds in situ: a new study technique and its application in terrestrial orchids. American Journal of Botany 80: 1374-1378.
Segraves KA, Thompson JN. 1999. Plant polyploidy and pollination: floral traits and insect visits to diploid and tetraploid Heuchera grossulariifolia. Evolution 53: 1114-1127.
Selosse M-A, Richard F, He X, Simard SW. 2006. Mycorrhizal networks: des liaisons dangereuses? Trends in Ecology and Evolution 21: 621-628.
Selosse M-A, Roy M. 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Science 14: 64-70.
Shefferson RP, Taylor DL, Weiß M, Garnica S, McCormick MK, Adams S, Gray HM, McFarland JW, Kull T, Tali K et al. 2007. The evolutionary history of mycorrhizal specificity among lady's slipper orchids. Evolution 61: 1380-1390.
Soltis DE, Albert VA, Leebens-Mack J, Bell CD, Paterson AH, Zheng C, Sankoff D, DePamphilis CW, Wall PK, Soltis PS. 2009. Polyploidy and angiosperm diversification. American Journal of Botany 96: 336-348.
Soltis DE, Soltis PS. 1999. Polyploidy: recurrent formation and genome evolution. Trends in Ecology & Evolution 14: 348-352.
Ståhlberg D. 2009. Habitat differentiation, hybridization and gene flow patterns in mixed populations of diploid and autotetraploid Dactylorhiza maculata s.l. (Orchidaceae). Evolutionary Ecology 23: 295-328.
Stark C, Babik W, Durka W. 2009. Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycological Research 113: 952-959.
Sterner RW, Elser JJ. 2002. Ecological stoichiometry: the biology of elements from molecules to the biosphere. Princeton, NJ, USA: Princeton University Press.
Suárez JP, Weiss M, Abele A, Garnica S, Oberwinkler F, Kottke I. 2006. Diverse tulasnelloid fungi form mycorrhizas with epiphytic orchids in an Andean cloud forest. Mycological Research 110: 1257-1270.
Sudová R, Rydlová J, Münzbergová Z, Suda J. 2010. Ploidy-specific interactions of three host plants with arbuscular mycorrhizal fungi: does genome copy number matter? American Journal of Botany 97: 1798-1807.
Sýkorová Z, Wiemken A, Redecker D. 2007. Co-occurring Gentiana verna and Gentiana acaulis and their neighboring plants in two Swiss upper montane meadows harbor distinct arbuscular mycorrhizal fungal communities. Applied and Environmental Microbiology 73: 5426-5434.
Tanabe AS. 2011. Kakusan4 and Aminosan: two programs for comparing nonpartitioned, proportional and separate models for combined molecular phylogenetic analyses of multilocus sequence data. Molecular Ecology Resources 11: 914-921.
Taylor DL, McCormick MK. 2008. Internal transcribed spacer primers and sequences for improved characterization of basidiomycetous orchid mycorrhizas. New Phytologist 177: 1020-1033.
Tedersoo L, Arnold AE, Hansen K. 2013. Novel aspects in the life cycle and biotrophic interactions in Pezizomycetes (Ascomycota, Fungi). Molecular Ecology 22: 1488-1493.
Tedersoo L, Hansen K, Perry BA, Kjøller R. 2006. Molecular and morphological diversity of pezizalean ectomycorrhiza. New Phytologist 170: 581-596.
Tedersoo L, Pärtel K, Jairus T, Gates G, Põldmaa K, Tamm H. 2009. Ascomycetes associated with ectomycorrhizas: molecular diversity and ecology with particular reference to the Helotiales. Environmental Microbiology 11: 3166-3178.
Ter Braak CJF, Šmilauer P. 2002. CANOCO reference manual and CanoDraw for Windows user's guide: software for canonical community ordination (version 4.5). Ithaca, NY, USA: Microcomputer Power.
Těšitelová T, Těšitel J, Jersáková J, Říhová G, Selosse M-A. 2012. Symbiotic germination capability of four Epipactis species (Orchidaceae) is broader than expected from adult ecology. American Journal of Botany 99: 1020-1032.
Trávníček P, Jersáková J, Kubátová B, Krejčíková J, Bateman RM, Lučanová M, Krajníková E, Těšitelová T, Štípková Z, Amardeilh J-P et al. 2012. Minority cytotypes in European populations of the Gymnadenia conopsea complex (Orchidaceae) greatly increase intraspecific and intrapopulation diversity. Annals of Botany 110: 977-986.
Trávníček P, Kubátová B, Čurn V, Rauchová J, Krajníková E, Jersáková J, Suda J. 2011. Remarkable coexistence of multiple cytotypes of the Gymnadenia conopsea aggregate (the fragrant orchid): evidence from flow cytometry. Annals of Botany 107: 77-87.
Van der Heijden MGA, Klironomos JN, Ursic M, Moutoglis P, Streitwolf-Engel R, Boller T, Wiemken A, Sanders IR. 1998. Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396: 69-72.
Van der Heijden MGA, Wiemken A, Sanders IR. 2003. Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plants. New Phytologist 157: 569-578.
Vandenkoornhuyse P, Ridgway KP, Watson IJ, Fitter AH, Young JPW. 2003. Co-existing grass species have distinctive arbuscular mycorrhizal communities. Molecular Ecology 12: 3085-3095.
Wardle DA, Bardgett RD, Klironomos JN, Setälä H, Van Der Putten WH, Wall DH. 2004. Ecological linkages between aboveground and belowground biota. Science 304: 1629-1633.
Waterman RJ, Bidartondo MI, Stofberg J, Combs JK, Gebauer G, Savolainen V, Barraclough TG, Pauw A. 2011. The effects of above- and belowground mutualisms on orchid speciation and coexistence. American Naturalist 177: E54-E68.
White TJ, Bruns T, Lee S, Taylor J. 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Sninsky JJ, White TJ, eds. PCR protocols: a guide to methods and applications. New York, NY, USA: Academic Press, 315-322.
Wood TE, Takebayashi N, Barker MS, Mayrose I, Greenspoon PB, Rieseberg LH. 2009. The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences, USA 106: 13 875-13 879.
Yang Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics 139: 993-1005.
Variability in Nutrient Use by Orchid Mycorrhizal Fungi in Two Medium Types
Polyploid evolution: The ultimate way to grasp the nettle
Germination and seedling establishment in orchids: a complex of requirements