Mycobiont identity and light conditions affect belowground morphology and physiology of a mixotrophic orchid Cremastra variabilis (Orchidaceae)
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
15H04417
JSPS KAKENHI
15K14442
Advanced Utilization of Fungus/Mushroom Resource for Sustainable Society in Harmony with Nature
PubMed
38381148
DOI
10.1007/s00572-024-01138-8
PII: 10.1007/s00572-024-01138-8
Knihovny.cz E-zdroje
- Klíčová slova
- Cremastra variabilis, Coralloid rhizome, Orchidaceae, Stable isotope, Symbiotic culture,
- MeSH
- Agaricales * MeSH
- Basidiomycota * MeSH
- lidé MeSH
- mykorhiza * fyziologie MeSH
- Orchidaceae * mikrobiologie MeSH
- semenáček mikrobiologie MeSH
- symbióza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
We have investigated whether mycobiont identity and environmental conditions affect morphology and physiology of the chlorophyllous orchid: Cremastra variabilis. This species grows in a broad range of environmental conditions and associates with saprotrophic rhizoctonias including Tulasnellaceae and saprotrophic non-rhizoctonian fungi from the family Psathyrellaceae. We cultured the orchid from seeds under aseptic culture conditions and subsequently inoculated the individuals with either a Tulasnellaceae or a Psathyrellaceae isolate. We observed underground organ development of the inoculated C. variabilis plants and estimated their nutritional dependency on fungi using stable isotope abundance. Coralloid rhizome development was observed in all individuals inoculated with the Psathyrellaceae isolate, and 1-5 shoots per seedling grew from the tip of the coralloid rhizome. In contrast, individuals associated with the Tulasnellaceae isolate did not develop coralloid rhizomes, and only one shoot emerged per plantlet. In darkness, δ13C enrichment was significantly higher with both fungal isolates, whereas δ15N values were only significantly higher in plants associated with the Psathyrellaceae isolate. We conclude that C. variabilis changes its nutritional dependency on fungal symbionts depending on light availability and secondly that the identity of fungal symbiont influences the morphology of underground organs.
Institut Universitaire de France Paris France
Ishikawa Prefectural University 1 308 Suematsu Nonoichi Ishikawa 921 8836 Japan
Naturalis Biodiversity Center Darwinweg 2 2333 CR Leiden The Netherlands
Zobrazit více v PubMed
Altschul SF, Madden TL, Schafer AA et al (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. https://doi.org/10.1093/nar/25.17.3389 PubMed DOI PMC
Barrett CF, Freudenstein JV, Taylor DL et al (2010) Range wide analysis of fungal associations in the fully mycoheterotrophic Corallorhiza striata complex (Orchidaceae) reveals extreme specificity on ectomycorrhizal Tomentella (Thelephoraceae) across North America. Am J Bot 97:628–643. https://doi.org/10.3732/ajb.0900230 PubMed DOI
Bartlett NS (1937) The statistical conception of mental factors. Br J Psychol 28:97–104. https://doi.org/10.1111/j.2044-8295.1937.tb00863.x DOI
Bayman P, Espinosa ATM, Aponte CMS et al (2016) Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. Am J Bot 103:1880–1889. https://doi.org/10.3732/ajb.1600127 PubMed DOI
Bidartondo MI, Burghardt B, Gebauer G et al (2004) Changing partners in the dark: isotopic and molecular evidence of ectomycorrhizal liaisons between forest orchids and trees. Proc Royal Soc B 271:1799–1806. https://doi.org/10.1098/rspb.2004.2807 DOI
Bougoure J, Ludwig M, Brundrett M et al (2009) Identity and specificity of the fungi forming mycorrhizas with the rare mycoheterotrophic orchid Rhizanthella gardneri. Mycol Res 113:1097–1106. https://doi.org/10.1016/j.mycres.2009.07.007 PubMed DOI
Bougoure J, Bougoure DS, Cairney JWG et al (2005) ITS-RFLP and sequence analysis of endophytes from Acianthus, Caladenia and Pterostylis (Orchidaceae) in southeastern Queensland. Mycol Res 109:452–460. https://doi.org/10.1017/s095375620500225x PubMed DOI
Cha JY, Igarashi T (1995) Armillaria species associated with Gastrodia elata in Japan. Eur J Plant Pathol 25:319–326. https://doi.org/10.1111/j.1439-0329.1995.tb01347.xCit DOI
Dearnaley J, Perotto S, Selosse MA (2016) Structure and development of orchid mycorrhizas. In: Martin F (ed) Molecular mycorrhizal symbiosis. Wiley-Blackwell, Hoboken, New Jersey, pp 63–86 DOI
Dearnaley JDW (2007) Further advances in orchid mycorrhizal research. Mycorrhiza 17:475–486. https://doi.org/10.1007/s00572-007-0138-1 PubMed DOI
Díaz IÁ, Oyama K, Alonso GC, Garciglia RS (2009) In vitro propagation of the endangered orchid Laelia speciosa. PCTOC 99:335–343. https://doi.org/10.1007/s11240-009-9609-8 DOI
Figura T, Tylová E, Jersáková J et al (2021) Fungal symbionts may modulate nitrate inhibitory effect on orchid seed germination. Mycorrhiza 31:231–241. https://doi.org/10.1007/s00572-021-01021-w PubMed DOI
Fochi V, Chitarra W, Kohler A et al (2017) Fungal and plant gene expression in the Tulasnella calospora–Serapias vomeracea symbiosis provides clues about nitrogen pathways in orchid mycorrhizas. New phytol 213:365–379. https://doi.org/10.1111/nph.14279 PubMed DOI
Freudenstein JV (1997) A monograph of Corallorhiza (Orchidaceae). Harv Pap Bot 1:5–51
Gardes M, Bruns TD (1993) ITS primers with enhanced specificity for basidiomycetes: application to the identification of mycorrhizae and rusts. Mol Ecol 2:133–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x DOI
Gebauer G, Meyer M (2003) PubMed DOI
Gebauer G, Preiss K, Gebauer AC (2016) Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytol 211:11–15. https://doi.org/10.1111/nph.13865 PubMed DOI
Girlanda M, Selosse MA, Cafasso D et al (2006) Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Mol Ecol 15:491–504. https://doi.org/10.1111/j.1365-294X.2005.02770.x PubMed DOI
Gonneau C, Jersáková J, Tredern ED et al (2014) Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. J Ecol 102:1183–1194. https://doi.org/10.1111/1365-2745.12274 DOI
Hynson NA, Madsen TP, Selosse MA et al (2013) The physiological ecology of mycoheterotrophy. In: Merckx VSFT (ed) Mycoheterotrophy: The biology of plats living on fungi. Springer Science + Business Media, New York, pp 297–340 DOI
Hynson NA, Preiss K, Gebauer G (2009) Is it better to give than to receive? A stable isotope perspective on orchid–fungal carbon transport in the green orchid species Goodyera repens and Goodyera oblongifolia. New Phytol 182:8–11. https://doi.org/10.1111/j.1469-8137.2009.02778.x PubMed DOI
Imhof S (2010) Are monocots particularly suited to develop mycoheterotrophy? In: Seberg O, Petersen G, Barfod AS (eds) Diversity, phylogeny, and evolution in the monocotyledons: Proceedings of the Fourth International Conference on the Comparative Biology of the Monocotyledons and the Fifth International Symposium on Grass Systematics and Evolution. Aarhus Universitetsforlag, Aarhus, pp 11–23
Jacquemyn H, Honnay O, Cammue PAB et al (2010) Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Mol Ecol 19:4086–4095. https://doi.org/10.1111/j.1365-294X.2010.04785.x PubMed DOI
Jacquemyn H, Brys R, Waud M et al (2021) Mycorrhizal communities and isotope signatures in two partially mycoheterotrophic orchids. Front Plant Sci 12:618140. https://doi.org/10.3389/fpls.2021.618140 PubMed DOI PMC
Johnson TR, Kane ME, Pérez HE (2011) Examining the interaction of light, nutrients and carbohydrates on seed germination and early seedling development of Bletia purpurea (Orchidaceae). Plant Growth Regul 63:89–99. https://doi.org/10.1007/s10725-010-9516-3 DOI
Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA (2005) Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytol 166:639–653. https://doi.org/10.1111/j.1469-8137.2005.01364.x PubMed DOI
Kano K (1968) Acceleration of the germination of so-called hard-togermination orchid seeds. Amer Orchid Soc Bull 37:690–698
Kinoshita A, Ogura-Tsujita Y, Umata H et al (2016) How do fungal partners affect the evolution and habitat preferences of mycoheterotrophic plants? A case study in Gastrodia. Am J Bot 103:207–220. https://doi.org/10.3732/ajb.1500082 PubMed DOI
Lallemand F, Robionek A, Courty PE et al (2018) The DOI
Liebel HT, Bidartondo MI, Preiss K et al (2010) C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. Am J Bot 97:903–912. https://doi.org/10.3732/ajb.0900354 PubMed DOI
Maekawa F (1971) The wild orchids of Japan in color [in Japanese]. Seibundo-shinkosha, Tokyo, Japan
Martos F, Dulormne M, Pailler T et al (2009) Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytol 184:668–681. https://doi.org/10.1111/j.1469-8137.2009.02987.x PubMed DOI
Matsuda Y, Shimizu S, Mori M et al (2012) Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. Am J Bot 99:1177–1188. https://doi.org/10.3732/ajb.1100546 PubMed DOI
May M, Jąkalski M, Novotná A et al (2020) Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza 30:51–61. https://doi.org/10.1007/s00572-020-00932-4 PubMed DOI
McKendrick SL, Leake JR, Read DJ (2000) Symbiotic germination and development of myco-heterotrophic plants in nature: transfer of carbon from ectomycorrhizal Salix repens and Betula pendula to the orchid Corallorhiza trifida through shared hyphal connections. New Phytol 145:539–548. https://doi.org/10.1046/j.1469-8137.2000.00592.x PubMed DOI
McKendrick SL, Leake JR, Taylor DL et al (2002) Symbiotic germination and development of the mycoheterotrophic orchid Neottia nidus-avis in nature and its requirement for locally distributed Sebacina spp. New Phytol 154:233–247. https://doi.org/10.1046/j.1469-8137.2002.00372.x DOI
Merckx VSFT, Mennes CB, Peay KG et al (2013) Evolution and diversification. In: Merckx V (ed) Mycoheterotrophy. Springer, New York, NY. https://doi.org/10.1007/978-1-4614-5209-6_5 DOI
Minasiewicz J, Zwolicki A, Figura T et al (2023) Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC Plant Biol. https://doi.org/10.1186/s12870-023-04436-z . https://bmcplantbiol.biomedcentral.com/articles/ PubMed DOI PMC
Murata-Kato S, Sato R, Abe S et al (2022) Partial mycoheterotrophy in green plants forming Paris-type arbuscular mycorrhiza requires a thorough investigation. New Phytol 234:1112–1118. https://doi.org/10.1111/nph.18049 PubMed DOI
Nurfadillah S, Swarts ND, Dixon KW et al (2013) Variation in nutrient-acquisition patterns by mycorrhizal fungi of rare and common orchids explains diversification in a global biodiversity hotspot. Ann Bot 111:1233–1241. https://doi.org/10.3390/jof9010088 DOI
Ogura-Tsujita Y, Yukawa T (2008) High mycorrhizal specificity in a widespread mycoheterotrophic plant, Eulophia zollingeri (Orchidaceae). Am J Bot 95:93–97. https://doi.org/10.3732/ajb.95.1.93 PubMed DOI
Park EJ, Lee WY (2013) In vitro symbiotic germination of myco-heterotrophic Gastrodia elata by Mycena species. Plant Biotechnol Rep 7:185–191. https://doi.org/10.1007/s11816-012-0248-x DOI
Preiss K, Adam IKU, Gebauer G (2010) Irradiance governs exploitation of fungi: fine-tuning of carbon gain by two partially mycoheterotrophic orchids. Proc Royal Soc B 277:1333–1336. https://doi.org/10.1098/rspb.2009.1966 DOI
R Development Core Team (2012) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna
Rammitsu K, Yagame T, Yamashita Y et al (2019) A leafless epiphytic orchid, Taeniophyllum glandulosum Blume (Orchidaceae), is specifically associated with the Ceratobasidiaceae family of basidiomycetous fungi. Mycorrhiza 29:159–166. https://doi.org/10.1007/s00572-019-00881-7 PubMed DOI
Roy M, Yagame T, Yamato M et al (2009) Ectomycorrhizal Inocybe species associate with the mycoheterotrophic orchid Epipogium aphyllum but not its asexual propagules. Ann Bot 104:595–610. https://doi.org/10.1093/aob/mcn269 PubMed DOI PMC
Rydlo J (2008) Epipactis helleborine jako polni plevel. Muz a Současnost, Roztoky, ser natur 23:211–218
Schiebold JMI, Bidartondo MI, Karasch P et al (2017) You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species. Ann Bot 119:1085–1095. https://doi.org/10.1093/aob/mcw265 PubMed DOI PMC
Schiebold JMI, Bidartondo MI, Lenhard F et al (2018) Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy in a common nutritional strategy in meadow orchids. J Ecol 106:168–178. https://doi.org/10.1111/1365-2745.12831 DOI
Schweiger JMI, Bidartondo MI, Gebauer G (2018) Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Funct Ecol 32:870–881. https://doi.org/10.1111/1365-2435.13042 DOI
Seidenfaden G (1994) The genus Chamaegastrodia (Orchidaceae). Nord J Bot 14:293–301. https://doi.org/10.1111/j.1756-1051.1994.tb00603.x DOI
Selosse MA, Weiss M, Jany JL et al (2002) Communities and populations of sebacinoid basidiomycetes associated with the achlorophyllous orchid Neottia nidus-avis (L.) LCM Rich. and neighbouring tree ectomycorrhizae. Mol Ecol 11:1831–1844. https://doi.org/10.1046/j.1365-294x.2002.01553.x PubMed DOI
Selosse MA, Charpin M, Not F (2017) Mixotrophy everywhere on land and water: the grand écart hypothesis. Ecol Lett 20:246–263. https://doi.org/10.1111/ele.12714 PubMed DOI
Selosse MA, Petrolli R, Mujica MI et al (2022) The waiting room hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Ann Bot 129:259–270. https://doi.org/10.1093/aob/mcab134 PubMed DOI
Shapiro SS, Wilk MB (1965) An analysis of variance test for normality (complete samples). Biometrika 52:591–611. https://doi.org/10.2307/2333709 DOI
Smith SE, Read DJ (2008) Mycorrhizal symbiosis, 3rd edn. Academic Press, San Diego, CA, USA
Stern WL (1988) The long-distance dispersal of Oeceoclades maculata. Am Orchid Soc Bull 57:960–971
Suetsugu K, Matsubayashi J (2021) Subterranean morphology modulates the degree of mycoheterotrophy in a green orchid Calypso bulbosa exploiting wood-decaying fungi. Funct Ecol 35:2305–2315. https://doi.org/10.1111/1365-2435.13864 DOI
Suetsugu K, Haraguchi T, Tanabe AS et al (2020) Specialized mycorrhizal association between a partially mycoheterotrophic orchid Oreorchis indica and a Tomentella taxon. Mycorrhiza 31:1–8. https://doi.org/10.1007/s00572-020-00999-z DOI
Suetsugu K, Haraguchi TF, Tayasu I (2021) Novel mycorrhizal cheating in a green orchid: Cremastra appendiculata depends on carbon from deadwood through fungal associations. New Phytol 235:333–343. https://doi.org/10.1111/nph.17313 PubMed DOI
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumer S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739. https://doi.org/10.1093/molbev/msr121 PubMed DOI PMC
Taylor DL, Bruns TD, Szaro TM et al (2003) Divergence in mycorrhizal specialization within Hexalectris spicata (Orchidaceae), a nonphotosynthetic desert orchid. Am J Bot 90:1168–1179. https://doi.org/10.3732/ajb.90.8.1168 PubMed DOI
Terashita T, Chuman S (1987) Fungi inhabiting wild orchids in Japan IV: Armillariella tabescens, a new symbiont of Galeora septentrionalis. Trans Mycol Soc Japan 28:145–154
Těšitelová T, Jersáková J, Roy M et al (2013) Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytol 199:1022–1033. https://doi.org/10.1111/nph.12348 PubMed DOI
Tukey JW (1949) Comparing individual means in the analysis of variance. Biometrics 5:99–114. https://doi.org/10.2307/3001913 PubMed DOI
Umata H, Ota Y, Yamada M et al (2013) Germination of the fully myco-heterotrophic orchid Cyrtosia septentrionalis is characterized by low fungal specificity and does not require direct seed-mycobiont contact. Mycoscience 54:343–352. https://doi.org/10.1016/j.myc.2012.12.003 DOI
Van Waes JM, Debergh PC (1986) Adaptation of the tetrazolium method for testing the seed viability, and scanning electron microscopy study of some Western European orchids. Physiol Plant 66:435–442. https://doi.org/10.1111/j.1399-3054.1986.tb05947.x DOI
Warcup JH, Talbot PHB (1967) Perfect states of Rhizoctonias associated with orchids. New Phytol 66:631–641. https://doi.org/10.1111/j.1469-8137.1967.tb05434.x DOI
Weising K, Nybom H, Wolf K, Meyer W (1995) DNA fingerprinting in plants in plants and fungi. CBC, Boca Raton
Xu J, Guo S (2000) Retrospect on the research of the cultivation of Gastrodia elata Bl a rare Chinese traditional medicine. Chin Med J 113:686–692 PubMed
Yagame T, Yamato M, Mii M, Suzuki A, Iwase K (2007) Developmental processes of achlorophyllous orchid, Epipogium roseum: from seed germination to flowering under symbiotic cultivation with mycorrhizal fungus. J Plant Res 120:229–236. https://doi.org/10.1007/s10265-006-0044-1 PubMed DOI
Yagame T, Funabiki E, Yukawa T et al (2018) Identification of mycobionts in an achlorophyllous orchid, Cremastra aphylla (Orchidaceae), based on molecular analysis and basidioma morphology. Mycoscience 59:18–23. https://doi.org/10.1016/j.myc.2017.08.001 DOI
Yagame T, Funabiki E, Nagasawa E et al (2013) Identification and symbiotic ability of Psathyrellaceae fungi isolated from a photosynthetic orchid, Cremastra appendiculata (Orchidaceae). Am J Bot 100:1823–1830. https://doi.org/10.3732/ajb.1300099 PubMed DOI
Yagame T, Lallemand F, Selosse MA et al (2021) Mycobiont diversity and first evidence of mixotrophy associated with Psathyrellaceae fungi in the chlorophyllous orchid Cremastra variabilis. J Plant Res 134:1213–1224. https://doi.org/10.1007/s10265-021-01337-w PubMed DOI
Yamashita Y, Kinoshita A, Yagame T et al (2020) Physisporinus is an important mycorrhizal partner for mycoheterotrophic plants: identification of mycorrhizal fungi of three Yoania species. Mycoscience 61:219–225. https://doi.org/10.1016/j.myc.2020.05.003 DOI
Yamato M, Iwase K (2008) Introduction of asymbiotically propagated seedlings of Cephalanthera falcata (Orchidaceae) into natural habitat and investigation of colonized mycorrhizal fungi. Ecol Res 23:329–337 DOI
Yamato M, Kosaka R, Masui Y, Goda Y, Shirasaka S, Maruyama A, Yukawa T (2021) Mycorrhizal associates of Cephalanthera falcata (Orchidaceae) in a habitat with giant individuals. Ecol Res 36:177–188. https://doi.org/10.1111/1440-1703.12187 DOI
Yamato M, Iwase K, Yagame T et al (2005) Isolation and identification of mycorrhizal fungi associating with an achlorophyllous plant, Epipogium roseum (Orchidaceae). Mycoscience 46:73–77. https://www.jstor.org/stable/23596213 DOI
Yang N, Wang D, Gao Y et al (2022) An efficient micropropagation protocol, chemical components, and hypoglycemic activity for Cremastra appendiculata (D. Don) Makino pseudobulbs. In Vitro Cell Dev Biol Plant 58:213–224. https://doi.org/10.1007/s11627-021-10222-z DOI
Yukawa T (1999) Cremastra aphylla (Orchidaceae), a new mycoparasitic species from Japan. Annals of the Tsukuba Botanical Garden 18:59–60
Zahn FE, Lee YI, Gebauer G (2022) Fungal association and root morphology shift stepwise during ontogenesis of orchid Cremastra appendiculata towards autotrophic nutrition. AoBP Plants 14:1–10. https://doi.org/10.1093/aobpla/plac021 DOI