Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články
PubMed
31965295
DOI
10.1007/s00572-020-00932-4
PII: 10.1007/s00572-020-00932-4
Knihovny.cz E-zdroje
- Klíčová slova
- 13C, 15N, Mycoheterotrophy, Mycorrhizae, Orchid transplantation, Rhizoctonia, Stable isotopes,
- MeSH
- autotrofní procesy MeSH
- fotosyntéza MeSH
- kořeny rostlin MeSH
- mykorhiza * MeSH
- Orchidaceae * MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.
Faculty of Biology University of Gdańsk ul Wita Stwosza 59 80 308 Gdańsk Poland
Faculty of Science University of South Bohemia Branišovská 31 370 05 České Budějovice Czech Republic
Zobrazit více v PubMed
Trends Plant Sci. 2018 Jul;23(7):577-587 PubMed
Mol Ecol Resour. 2014 Jul;14(4):679-99 PubMed
Proc Biol Sci. 2010 May 7;277(1686):1333-6 PubMed
Front Plant Sci. 2017 Aug 29;8:1497 PubMed
Trends Plant Sci. 2009 Feb;14(2):64-70 PubMed
Mycorrhiza. 2014 Nov;24(8):603-10 PubMed
New Phytol. 2018 Feb;217(3):968-972 PubMed
Am J Bot. 2012 Jul;99(7):1177-88 PubMed
Mol Ecol. 2006 Feb;15(2):491-504 PubMed
Mycorrhiza. 2008 Sep;18(6-7):331-8 PubMed
New Phytol. 2016 Jul;211(1):20-40 PubMed
Ecology. 2016 Jun;97(6):1452-62 PubMed
Mycologia. 2006 Nov-Dec;98(6):1065-75 PubMed
Bioinformatics. 2011 Aug 15;27(16):2194-200 PubMed
New Phytol. 2005 May;166(2):639-53 PubMed
New Phytol. 2008;180(1):176-84 PubMed
Microb Ecol. 2004 May;47(4):416-26 PubMed
Proc Biol Sci. 2004 Sep 7;271(1550):1799-806 PubMed
PeerJ. 2014 Sep 25;2:e593 PubMed
Mol Phylogenet Evol. 2013 May;67(2):311-35 PubMed
Ann Bot. 2017 May 1;119(7):1085-1095 PubMed
Mycol Res. 2009 Oct;113(Pt 10):1062-9 PubMed
Trends Ecol Evol. 2006 Nov;21(11):621-8 PubMed
Trends Plant Sci. 2014 Nov;19(11):683-5 PubMed
Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412 PubMed
Mycorrhiza. 2010 Apr;20(4):217-63 PubMed
Genome Biol Evol. 2016 Aug 03;8(7):2164-75 PubMed
Ann Bot. 2017 Sep 1;120(3):361-371 PubMed
New Phytol. 2016 Jul;211(1):11-5 PubMed
Nat Methods. 2010 May;7(5):335-6 PubMed
Mol Ecol. 2013 Nov;22(21):5271-7 PubMed
Oecologia. 2014 Jul;175(3):875-85 PubMed
Am J Bot. 2012 Jun;99(6):1020-32 PubMed
Ann Bot. 2016 Jul;118(1):105-14 PubMed
J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed
Mixotrophy in orchids: facts, questions, and perspectives
Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids