Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species

. 2020 Jan ; 30 (1) : 51-61. [epub] 20200121

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31965295
Odkazy

PubMed 31965295
DOI 10.1007/s00572-020-00932-4
PII: 10.1007/s00572-020-00932-4
Knihovny.cz E-zdroje

Some mixotrophic plants from temperate forests use the mycorrhizal fungi colonizing their roots as a carbon source to supplement their photosynthesis. These fungi are also mycorrhizal on surrounding trees, from which they transfer carbon to mixotrophic plants. These plants are thus reputed difficult to transplant, even when their protection requires it. Here, we take profit of a successful ex situ pot cultivation over 1 to 3 years of the mixotrophic orchid Epipacis helleborine to investigate its mycorrhizal and nutrition status. Firstly, compared with surrounding autotrophic plants, it did not display the higher N content and higher isotopic (13C and 15N) abundance that normally feature mixotrophic orchids because they incorporate N-, 13C-, and 15N-rich fungal biomass. Second, fungal barcoding by next-generation sequencing revealed that the proportion of ectomycorrhizal fungi (expressed as percentage of the total number of either reads or operational taxonomic units) was unusually low compared with E. helleborine growing in situ: instead, we found a high percentage of rhizoctonias, the usual mycorrhizal partners of autotrophic orchids. Altogether, this supports autotrophic survival. Added to the recently published evidence that plastid genomes of mixotrophic orchids have intact photosynthetic genes, this suggests that at least some of them have abilities for autotrophy. This adds to the ecological plasticity of mixotrophic plants, and may allow some reversion to autotrophy in their evolution.

Zobrazit více v PubMed

Trends Plant Sci. 2018 Jul;23(7):577-587 PubMed

Mol Ecol Resour. 2014 Jul;14(4):679-99 PubMed

Proc Biol Sci. 2010 May 7;277(1686):1333-6 PubMed

Front Plant Sci. 2017 Aug 29;8:1497 PubMed

Trends Plant Sci. 2009 Feb;14(2):64-70 PubMed

Mycorrhiza. 2014 Nov;24(8):603-10 PubMed

New Phytol. 2018 Feb;217(3):968-972 PubMed

Am J Bot. 2012 Jul;99(7):1177-88 PubMed

Mol Ecol. 2006 Feb;15(2):491-504 PubMed

Mycorrhiza. 2008 Sep;18(6-7):331-8 PubMed

New Phytol. 2016 Jul;211(1):20-40 PubMed

Ecology. 2016 Jun;97(6):1452-62 PubMed

Mycologia. 2006 Nov-Dec;98(6):1065-75 PubMed

Bioinformatics. 2011 Aug 15;27(16):2194-200 PubMed

New Phytol. 2005 May;166(2):639-53 PubMed

New Phytol. 2008;180(1):176-84 PubMed

Microb Ecol. 2004 May;47(4):416-26 PubMed

Proc Biol Sci. 2004 Sep 7;271(1550):1799-806 PubMed

PeerJ. 2014 Sep 25;2:e593 PubMed

Mol Phylogenet Evol. 2013 May;67(2):311-35 PubMed

Ann Bot. 2017 May 1;119(7):1085-1095 PubMed

Mycol Res. 2009 Oct;113(Pt 10):1062-9 PubMed

Trends Ecol Evol. 2006 Nov;21(11):621-8 PubMed

Trends Plant Sci. 2014 Nov;19(11):683-5 PubMed

Proc Natl Acad Sci U S A. 2017 Oct 31;114(44):E9403-E9412 PubMed

Mycorrhiza. 2010 Apr;20(4):217-63 PubMed

Genome Biol Evol. 2016 Aug 03;8(7):2164-75 PubMed

Ann Bot. 2017 Sep 1;120(3):361-371 PubMed

New Phytol. 2016 Jul;211(1):11-5 PubMed

Nat Methods. 2010 May;7(5):335-6 PubMed

Mol Ecol. 2013 Nov;22(21):5271-7 PubMed

Oecologia. 2014 Jul;175(3):875-85 PubMed

Am J Bot. 2012 Jun;99(6):1020-32 PubMed

Ann Bot. 2016 Jul;118(1):105-14 PubMed

J Mol Biol. 1990 Oct 5;215(3):403-10 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...