Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses
Jazyk angličtina Země Německo Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
12U8918N
FWO
CEP - Centrální evidence projektů
PubMed
34173050
PubMed Central
PMC8233253
DOI
10.1007/s00425-021-03659-4
PII: 10.1007/s00425-021-03659-4
Knihovny.cz E-zdroje
- Klíčová slova
- Antioxidative response, Biomass, Drought, Metabolism, Oryza sativa, Osmotic adjustment, Vegetative stage,
- MeSH
- antioxidancia MeSH
- fyziologická adaptace MeSH
- období sucha MeSH
- rýže (rod) * MeSH
- šlechtění rostlin MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antioxidancia MeSH
Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.
Department of Botany Faculty of Science Beni Suef University Beni Suef Egypt
Laboratory for Integrated Molecular Plant Physiology Research University of Antwerp Antwerp Belgium
Laboratory of Plant Physiology Wageningen University and Research Wageningen The Netherlands
School of Plant Sciences The University of Arizona Tucson AZ USA
Zobrazit více v PubMed
Araújo WL, Tohge T, Ishizaki K, et al. Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011;16:489–498. doi: 10.1016/j.tplants.2011.05.008. PubMed DOI
Araújo WL, Nunes-Nesi A, Nikoloski Z, et al. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 2012;35:1–21. doi: 10.1111/j.1365-3040.2011.02332.x. PubMed DOI
Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–396. doi: 10.1104/pp.106.082040. PubMed DOI PMC
Atlin GN, Lafitte HR, Tao D, et al. Developing rice cultivars for high-fertility upland systems in the Asian tropics. F Crop Res. 2006;97:43–52. doi: 10.1016/j.fcr.2005.08.014. DOI
Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot. 2014;65:3799–3811. doi: 10.1093/jxb/eru039. PubMed DOI
Bauwe H, Hagemann M, Fernie AR. Photorespiration: players, partners and origin. Trends Plant Sci. 2010;15:330–336. doi: 10.1016/j.tplants.2010.03.006. PubMed DOI
Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI
Bentsink L, Alonso-Blanco C, Vreugdenhil D, et al. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 2000;124:1595–1604. doi: 10.1104/pp.124.4.1595. PubMed DOI PMC
Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/S0076-6879(99)99005-5. PubMed DOI
Biswal AK, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed. 2013;31:749–766. doi: 10.1007/s11032-013-9847-7. DOI
Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800. PubMed DOI
Cabuslay GS, Ito O, Alejar AA. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci. 2002;163:815–827. doi: 10.1016/S0168-9452(02)00217-0. DOI
Carreno-Quintero N, Undas A, Bachem CWB, et al. Cross-platform comparative analyses of genetic variation in amino acid content in potato tubers. Metabolomics. 2014;10:1239–1257. doi: 10.1007/s11306-014-0661-y. DOI
Casartelli A, Riewe D, Hubberten HM, et al. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice. 2018;11:9. doi: 10.1186/s12284-017-0189-7. PubMed DOI PMC
Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC
Chrobok D, Law SR, Brouwer B, et al. Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiol. 2016;172:2132–2153. doi: 10.1104/pp.16.01463. PubMed DOI PMC
Claeys H, Inze D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013;162:1768–1779. doi: 10.1104/pp.113.220921. PubMed DOI PMC
Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:1–13. doi: 10.3389/fenvs.2014.00053. DOI
Dhindsa RS, Plumb-Dhindsa PL, Reid DM. Leaf senescence and lipid peroxidation: effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI
Fàbregas N, Fernie AR. The metabolic response to drought. J Exp Bot. 2019;70:1077–1085. doi: 10.1093/jxb/ery437. PubMed DOI
FAO (2014) A regional rice strategy for sustainable food security in Asia and the Pacific. RAP Publication 2014/05. ISBN 978-92-5-108192-1. E-ISBN 978-92-5-108193-8
Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot. 2018;154:134–142. doi: 10.1016/j.envexpbot.2018.05.003. PubMed DOI PMC
Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC
Gayen D, Barua P, Lande NV, et al. Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environ Exp Bot. 2019;160:12–24. doi: 10.1016/j.envexpbot.2019.01.003. DOI
Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC
He H, De Souza VD, Basten Snoek L, et al. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. J Exp Bot. 2014;65:6603–6615. doi: 10.1093/jxb/eru378. PubMed DOI PMC
Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. Amino acid catabolism in plants. Mol Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI
Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. PubMed DOI
Hodges M, Dellero Y, Keech O, et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot. 2016;67:3015–3026. doi: 10.1093/jxb/erw145. PubMed DOI
Hummel I, Pantin F, Sulpice R, et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 2010;154:357–372. doi: 10.1104/pp.110.157008. PubMed DOI PMC
Kadam NN, Struik PC, Rebolledo MC, et al. Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. J Exp Bot. 2018;69:4017–4032. doi: 10.1093/jxb/ery186. PubMed DOI PMC
Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–1608. doi: 10.1093/jxb/err460. PubMed DOI PMC
Leng G, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ. 2019;654:811–821. doi: 10.1016/j.scitotenv.2018.10.434. PubMed DOI PMC
Levine RL, Williams JA, Stadtman EP, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/S0076-6879(94)33040-9. PubMed DOI
Lilley JM, Ludlow MM. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. F Crop Res. 1996;48:185–197. doi: 10.1016/S0378-4290(96)00045-7. DOI
Liu JX, Liao DQ, Oane R, et al. Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. F Crop Res. 2006;97:87–100. doi: 10.1016/j.fcr.2005.08.019. DOI
Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI
Luquet D, Clément-Vidal A, Fabre D, et al. Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. Funct Plant Biol. 2008;35:689–704. doi: 10.1071/FP08027. PubMed DOI
Mackill DJ, Khush GS. IR64: a high-quality and high-yielding mega variety. Rice. 2018;11:18. doi: 10.1186/s12284-018-0208-3. PubMed DOI PMC
Maurino VG, Peterhansel C. Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol. 2010;13:248–255. doi: 10.1016/j.pbi.2010.01.006. PubMed DOI
Melandri G, AbdElgawad H, Riewe D, et al. Biomarkers for grain yield stability in rice under drought stress. J Exp Bot. 2020;71:669–683. doi: 10.1093/jxb/erz221. PubMed DOI PMC
Michaeli S, Fromm H. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front Plant Sci. 2015;6:419. doi: 10.3389/fpls.2015.00419. PubMed DOI PMC
Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI
Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI
Morita S, Nakano H. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of rripening in heat-tolerant rice cultivar Nikomaru. Crop Sci. 2011;51:818. doi: 10.2135/cropsci2010.06.0373. DOI
Muller B, Pantin F, Génard M, et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot. 2011;62:1715–1729. doi: 10.1093/jxb/erq438. PubMed DOI
Murshed R, Lopez-Lauri F, Sallanon H. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal Biochem. 2008;383:320–322. doi: 10.1016/j.ab.2008.07.020. PubMed DOI
Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol. 2015;24:10–16. doi: 10.1016/j.pbi.2015.01.003. PubMed DOI
Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 2014;164:1636–1648. doi: 10.1104/pp.113.233478. PubMed DOI PMC
Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci. 2012;69:3225–3243. doi: 10.1007/s00018-012-1091-5. PubMed DOI PMC
Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci. 2015;6:542. doi: 10.3389/fpls.2015.00542. PubMed DOI PMC
Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot. 2017;100:726–734. doi: 10.1093/jxb/erx314. PubMed DOI PMC
Parent B, Suard B, Serraj R, Tardieu F. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant Cell Environ. 2010;33:1256–1267. doi: 10.1111/j.1365-3040.2010.02145.x. PubMed DOI
Passioura JB. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol. 2012;39:851–859. doi: 10.1071/FP12079. PubMed DOI
Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62:869–882. doi: 10.1093/jxb/erq340. PubMed DOI
Raorane ML, Pabuayon IM, Miro B, et al. Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1: altered roots and flag leaves but similar spikelets of rice under drought. Mol Breed. 2015;35:1–25. doi: 10.1007/s11032-015-0322-5. PubMed DOI PMC
Reynolds MP, Quilligan E, Aggarwal PK, et al. An integrated approach to maintaining cereal productivity under climate change. Glob Food Sec. 2016;8:9–18. doi: 10.1016/j.gfs.2016.02.002. DOI
Sandhu N, Singh A, Dixit S, et al. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 2014;15:1–15. doi: 10.1186/1471-2156-15-63. PubMed DOI PMC
Selote DS, Khanna-Chopra R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant. 2004;121:462–471. doi: 10.1111/j.1399-3054.2004.00341.x. DOI
Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 2005;46:209–221. doi: 10.1007/s10725-005-0002-2. DOI
Skirycz A, Inzé D. More from less: plant growth under limited water. Curr Opin Biotechnol. 2010;21:197–203. doi: 10.1016/j.copbio.2010.03.002. PubMed DOI
Soares C, Carvalho MEA, Azevedo RA, Fidalgo F. Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot. 2019;161:4–25. doi: 10.1016/j.envexpbot.2018.12.009. DOI
Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother. 2014;58:7250–7257. doi: 10.1128/AAC.03728-14. PubMed DOI PMC
Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x. PubMed DOI
Todaka D, Zhao Y, Yoshida T, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 2017;90:61–78. doi: 10.1111/tpj.13468. PubMed DOI
Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141:384–390. doi: 10.1104/pp.106.078295. PubMed DOI PMC
Venuprasad R, Lafitte HR, Atlin GN. Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2007;47:285–293. doi: 10.2135/cropsci2006.03.0181. DOI
Venuprasad R, Bool ME, Quiatchon L, Atlin GN. A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet. 2012;124:323–332. doi: 10.1007/s00122-011-1707-4. PubMed DOI
Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol. 2011;14:240–245. doi: 10.1016/j.pbi.2011.04.006. PubMed DOI
Wang DR, Han R, Wolfrum EJ, McCouch SR. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa. New Phytol. 2017;215:658–671. doi: 10.1111/nph.14614. PubMed DOI PMC
Watanabe M, Balazadeh S, Tohge T, et al. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 2013;162:1290–1310. doi: 10.1104/pp.113.217380. PubMed DOI PMC
Wingler A, Purdy S, MacLean JA, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot. 2006;57:391–399. doi: 10.1093/jxb/eri279. PubMed DOI
Yang J, Zhang J, Wang Z, et al. Remobilization of carbon reserves in response to water deficit during grain filling of rice. F Crop Res. 2001;71:47–55. doi: 10.1016/S0378-4290(01)00147-2. DOI
Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol. 1972;23:437–464. doi: 10.1146/annurev.pp.23.060172.002253. DOI
You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC