Drought tolerance in selected aerobic and upland rice varieties is driven by different metabolic and antioxidative responses

. 2021 Jun 25 ; 254 (1) : 13. [epub] 20210625

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34173050

Grantová podpora
12U8918N FWO CEP - Centrální evidence projektů

Odkazy

PubMed 34173050
PubMed Central PMC8233253
DOI 10.1007/s00425-021-03659-4
PII: 10.1007/s00425-021-03659-4
Knihovny.cz E-zdroje

Sugar-mediated osmotic acclimation and a strong antioxidative response reduce drought-induced biomass loss at the vegetative stage in rice. A clear understanding of the physiological and biochemical adaptations to water limitation in upland and aerobic rice can help to identify the mechanisms underlying their tolerance to low water availability. In this study, three indica rice varieties-IR64 (lowland), Apo (aerobic), and UPL Ri-7 (upland)-, that are characterized by contrasting levels of drought tolerance, were exposed to drought at the vegetative stage. Drought-induced changes in biomass, leaf metabolites and oxidative stress markers/enzyme activities were analyzed in each variety at multiple time points. The two drought-tolerant varieties, Apo and UPL Ri-7 displayed a reduced water use in contrast to the susceptible variety IR64 that displayed high water consumption and consequent strong leaf dehydration upon drought treatment. A sugar-mediated osmotic acclimation in UPL Ri-7 and a strong antioxidative response in Apo were both effective in limiting the drought-induced biomass loss in these two varieties, while biomass loss was high in IR64, also after recovery. A qualitative comparison of these results with the ones of a similar experiment conducted in the field at the reproductive stage showed that only Apo, which also in this stage showed the highest antioxidant power, was able to maintain a stable grain yield under stress. Our results show that different metabolic and antioxidant adaptations confer drought tolerance to aerobic and upland rice varieties in the vegetative stage. The effectiveness of these adaptations differs between developmental stages. Unraveling the genetic control of these mechanisms might be exploited in breeding for new rice varieties adapted to water-limited environments.

Zobrazit více v PubMed

Araújo WL, Tohge T, Ishizaki K, et al. Protein degradation—an alternative respiratory substrate for stressed plants. Trends Plant Sci. 2011;16:489–498. doi: 10.1016/j.tplants.2011.05.008. PubMed DOI

Araújo WL, Nunes-Nesi A, Nikoloski Z, et al. Metabolic control and regulation of the tricarboxylic acid cycle in photosynthetic and heterotrophic plant tissues. Plant Cell Environ. 2012;35:1–21. doi: 10.1111/j.1365-3040.2011.02332.x. PubMed DOI

Asada K. Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol. 2006;141:391–396. doi: 10.1104/pp.106.082040. PubMed DOI PMC

Atlin GN, Lafitte HR, Tao D, et al. Developing rice cultivars for high-fertility upland systems in the Asian tropics. F Crop Res. 2006;97:43–52. doi: 10.1016/j.fcr.2005.08.014. DOI

Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C. Autophagy, plant senescence, and nutrient recycling. J Exp Bot. 2014;65:3799–3811. doi: 10.1093/jxb/eru039. PubMed DOI

Bauwe H, Hagemann M, Fernie AR. Photorespiration: players, partners and origin. Trends Plant Sci. 2010;15:330–336. doi: 10.1016/j.tplants.2010.03.006. PubMed DOI

Baxter A, Mittler R, Suzuki N. ROS as key players in plant stress signalling. J Exp Bot. 2014;65:1229–1240. doi: 10.1093/jxb/ert375. PubMed DOI

Bentsink L, Alonso-Blanco C, Vreugdenhil D, et al. Genetic analysis of seed-soluble oligosaccharides in relation to seed storability of Arabidopsis. Plant Physiol. 2000;124:1595–1604. doi: 10.1104/pp.124.4.1595. PubMed DOI PMC

Benzie IFF, Strain JJ. Ferric reducing/antioxidant power assay: direct measure of total antioxidant activity of biological fluids and modified version for simultaneous measurement of total antioxidant power and ascorbic acid concentration. Methods Enzymol. 1999;299:15–27. doi: 10.1016/S0076-6879(99)99005-5. PubMed DOI

Biswal AK, Kohli A. Cereal flag leaf adaptations for grain yield under drought: knowledge status and gaps. Mol Breed. 2013;31:749–766. doi: 10.1007/s11032-013-9847-7. DOI

Blum A. Osmotic adjustment is a prime drought stress adaptive engine in support of plant production. Plant Cell Environ. 2017;40:4–10. doi: 10.1111/pce.12800. PubMed DOI

Cabuslay GS, Ito O, Alejar AA. Physiological evaluation of responses of rice (Oryza sativa L.) to water deficit. Plant Sci. 2002;163:815–827. doi: 10.1016/S0168-9452(02)00217-0. DOI

Carreno-Quintero N, Undas A, Bachem CWB, et al. Cross-platform comparative analyses of genetic variation in amino acid content in potato tubers. Metabolomics. 2014;10:1239–1257. doi: 10.1007/s11306-014-0661-y. DOI

Casartelli A, Riewe D, Hubberten HM, et al. Exploring traditional aus-type rice for metabolites conferring drought tolerance. Rice. 2018;11:9. doi: 10.1186/s12284-017-0189-7. PubMed DOI PMC

Chaves MM, Flexas J, Pinheiro C. Photosynthesis under drought and salt stress: regulation mechanisms from whole plant to cell. Ann Bot. 2009;103:551–560. doi: 10.1093/aob/mcn125. PubMed DOI PMC

Chrobok D, Law SR, Brouwer B, et al. Dissecting the metabolic role of mitochondria during developmental leaf senescence. Plant Physiol. 2016;172:2132–2153. doi: 10.1104/pp.16.01463. PubMed DOI PMC

Claeys H, Inze D. The agony of choice: how plants balance growth and survival under water-limiting conditions. Plant Physiol. 2013;162:1768–1779. doi: 10.1104/pp.113.220921. PubMed DOI PMC

Das K, Roychoudhury A. Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci. 2014;2:1–13. doi: 10.3389/fenvs.2014.00053. DOI

Dhindsa RS, Plumb-Dhindsa PL, Reid DM. Leaf senescence and lipid peroxidation: effects of some phytohormones, and scavengers of free radicals and singlet oxygen. Physiol Plant. 1982;56:453–457. doi: 10.1111/j.1399-3054.1982.tb04539.x. DOI

Fàbregas N, Fernie AR. The metabolic response to drought. J Exp Bot. 2019;70:1077–1085. doi: 10.1093/jxb/ery437. PubMed DOI

FAO (2014) A regional rice strategy for sustainable food security in Asia and the Pacific. RAP Publication 2014/05. ISBN 978-92-5-108192-1. E-ISBN 978-92-5-108193-8

Foyer CH. Reactive oxygen species, oxidative signaling and the regulation of photosynthesis. Environ Exp Bot. 2018;154:134–142. doi: 10.1016/j.envexpbot.2018.05.003. PubMed DOI PMC

Foyer CH, Noctor G. Ascorbate and glutathione: the heart of the redox hub. Plant Physiol. 2011;155:2–18. doi: 10.1104/pp.110.167569. PubMed DOI PMC

Gayen D, Barua P, Lande NV, et al. Dehydration-responsive alterations in the chloroplast proteome and cell metabolomic profile of rice reveals key stress adaptation responses. Environ Exp Bot. 2019;160:12–24. doi: 10.1016/j.envexpbot.2019.01.003. DOI

Halliwell B. Reactive species and antioxidants. Redox biology is a fundamental theme of aerobic life. Plant Physiol. 2006;141:312–322. doi: 10.1104/pp.106.077073. PubMed DOI PMC

He H, De Souza VD, Basten Snoek L, et al. Interaction between parental environment and genotype affects plant and seed performance in Arabidopsis. J Exp Bot. 2014;65:6603–6615. doi: 10.1093/jxb/eru378. PubMed DOI PMC

Hildebrandt TM, Nunes Nesi A, Araújo WL, Braun HP. Amino acid catabolism in plants. Mol Plant. 2015;8:1563–1579. doi: 10.1016/j.molp.2015.09.005. PubMed DOI

Hodges DM, DeLong JM, Forney CF, Prange RK. Improving the thiobarbituric acid-reactive-substances assay for estimating lipid peroxidation in plant tissues containing anthocyanin and other interfering compounds. Planta. 1999;207:604–611. doi: 10.1007/s004250050524. PubMed DOI

Hodges M, Dellero Y, Keech O, et al. Perspectives for a better understanding of the metabolic integration of photorespiration within a complex plant primary metabolism network. J Exp Bot. 2016;67:3015–3026. doi: 10.1093/jxb/erw145. PubMed DOI

Hummel I, Pantin F, Sulpice R, et al. Arabidopsis plants acclimate to water deficit at low cost through changes of carbon usage: an integrated perspective using growth, metabolite, enzyme, and gene expression analysis. Plant Physiol. 2010;154:357–372. doi: 10.1104/pp.110.157008. PubMed DOI PMC

Kadam NN, Struik PC, Rebolledo MC, et al. Genome-wide association reveals novel genomic loci controlling rice grain yield and its component traits under water-deficit stress during the reproductive stage. J Exp Bot. 2018;69:4017–4032. doi: 10.1093/jxb/ery186. PubMed DOI PMC

Krasensky J, Jonak C. Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J Exp Bot. 2012;63:1593–1608. doi: 10.1093/jxb/err460. PubMed DOI PMC

Leng G, Hall J. Crop yield sensitivity of global major agricultural countries to droughts and the projected changes in the future. Sci Total Environ. 2019;654:811–821. doi: 10.1016/j.scitotenv.2018.10.434. PubMed DOI PMC

Levine RL, Williams JA, Stadtman EP, Shacter E. Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol. 1994;233:346–357. doi: 10.1016/S0076-6879(94)33040-9. PubMed DOI

Lilley JM, Ludlow MM. Expression of osmotic adjustment and dehydration tolerance in diverse rice lines. F Crop Res. 1996;48:185–197. doi: 10.1016/S0378-4290(96)00045-7. DOI

Liu JX, Liao DQ, Oane R, et al. Genetic variation in the sensitivity of anther dehiscence to drought stress in rice. F Crop Res. 2006;97:87–100. doi: 10.1016/j.fcr.2005.08.019. DOI

Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with the Folin-phenol reagent. J Biol Chem. 1951;193:265–275. doi: 10.1016/S0021-9258(19)52451-6. PubMed DOI

Luquet D, Clément-Vidal A, Fabre D, et al. Orchestration of transpiration, growth and carbohydrate dynamics in rice during a dry-down cycle. Funct Plant Biol. 2008;35:689–704. doi: 10.1071/FP08027. PubMed DOI

Mackill DJ, Khush GS. IR64: a high-quality and high-yielding mega variety. Rice. 2018;11:18. doi: 10.1186/s12284-018-0208-3. PubMed DOI PMC

Maurino VG, Peterhansel C. Photorespiration: current status and approaches for metabolic engineering. Curr Opin Plant Biol. 2010;13:248–255. doi: 10.1016/j.pbi.2010.01.006. PubMed DOI

Melandri G, AbdElgawad H, Riewe D, et al. Biomarkers for grain yield stability in rice under drought stress. J Exp Bot. 2020;71:669–683. doi: 10.1093/jxb/erz221. PubMed DOI PMC

Michaeli S, Fromm H. Closing the loop on the GABA shunt in plants: are GABA metabolism and signaling entwined? Front Plant Sci. 2015;6:419. doi: 10.3389/fpls.2015.00419. PubMed DOI PMC

Miller G, Suzuki N, Ciftci-Yilmaz S, Mittler R. Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ. 2010;33:453–467. doi: 10.1111/j.1365-3040.2009.02041.x. PubMed DOI

Mittler R, Vanderauwera S, Suzuki N, et al. ROS signaling: the new wave? Trends Plant Sci. 2011;16:300–309. doi: 10.1016/j.tplants.2011.03.007. PubMed DOI

Morita S, Nakano H. Nonstructural carbohydrate content in the stem at full heading contributes to high performance of rripening in heat-tolerant rice cultivar Nikomaru. Crop Sci. 2011;51:818. doi: 10.2135/cropsci2010.06.0373. DOI

Muller B, Pantin F, Génard M, et al. Water deficits uncouple growth from photosynthesis, increase C content, and modify the relationships between C and growth in sink organs. J Exp Bot. 2011;62:1715–1729. doi: 10.1093/jxb/erq438. PubMed DOI

Murshed R, Lopez-Lauri F, Sallanon H. Microplate quantification of enzymes of the plant ascorbate-glutathione cycle. Anal Biochem. 2008;383:320–322. doi: 10.1016/j.ab.2008.07.020. PubMed DOI

Nakabayashi R, Saito K. Integrated metabolomics for abiotic stress responses in plants. Curr Opin Plant Biol. 2015;24:10–16. doi: 10.1016/j.pbi.2015.01.003. PubMed DOI

Noctor G, Mhamdi A, Foyer CH. The roles of reactive oxygen metabolism in drought: not so cut and dried. Plant Physiol. 2014;164:1636–1648. doi: 10.1104/pp.113.233478. PubMed DOI PMC

Obata T, Fernie AR. The use of metabolomics to dissect plant responses to abiotic stresses. Cell Mol Life Sci. 2012;69:3225–3243. doi: 10.1007/s00018-012-1091-5. PubMed DOI PMC

Obidiegwu JE, Bryan GJ, Jones HG, Prashar A. Coping with drought: stress and adaptive responses in potato and perspectives for improvement. Front Plant Sci. 2015;6:542. doi: 10.3389/fpls.2015.00542. PubMed DOI PMC

Ouyang W, Struik PC, Yin X, Yang J. Stomatal conductance, mesophyll conductance, and transpiration efficiency in relation to leaf anatomy in rice and wheat genotypes under drought. J Exp Bot. 2017;100:726–734. doi: 10.1093/jxb/erx314. PubMed DOI PMC

Parent B, Suard B, Serraj R, Tardieu F. Rice leaf growth and water potential are resilient to evaporative demand and soil water deficit once the effects of root system are neutralized. Plant Cell Environ. 2010;33:1256–1267. doi: 10.1111/j.1365-3040.2010.02145.x. PubMed DOI

Passioura JB. Phenotyping for drought tolerance in grain crops: when is it useful to breeders? Funct Plant Biol. 2012;39:851–859. doi: 10.1071/FP12079. PubMed DOI

Pinheiro C, Chaves MM. Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot. 2011;62:869–882. doi: 10.1093/jxb/erq340. PubMed DOI

Raorane ML, Pabuayon IM, Miro B, et al. Variation in primary metabolites in parental and near-isogenic lines of the QTL qDTY 12.1: altered roots and flag leaves but similar spikelets of rice under drought. Mol Breed. 2015;35:1–25. doi: 10.1007/s11032-015-0322-5. PubMed DOI PMC

Reynolds MP, Quilligan E, Aggarwal PK, et al. An integrated approach to maintaining cereal productivity under climate change. Glob Food Sec. 2016;8:9–18. doi: 10.1016/j.gfs.2016.02.002. DOI

Sandhu N, Singh A, Dixit S, et al. Identification and mapping of stable QTL with main and epistasis effect on rice grain yield under upland drought stress. BMC Genet. 2014;15:1–15. doi: 10.1186/1471-2156-15-63. PubMed DOI PMC

Selote DS, Khanna-Chopra R. Drought-induced spikelet sterility is associated with an inefficient antioxidant defence in rice panicles. Physiol Plant. 2004;121:462–471. doi: 10.1111/j.1399-3054.2004.00341.x. DOI

Sharma P, Dubey RS. Drought induces oxidative stress and enhances the activities of antioxidant enzymes in growing rice seedlings. Plant Growth Regul. 2005;46:209–221. doi: 10.1007/s10725-005-0002-2. DOI

Skirycz A, Inzé D. More from less: plant growth under limited water. Curr Opin Biotechnol. 2010;21:197–203. doi: 10.1016/j.copbio.2010.03.002. PubMed DOI

Soares C, Carvalho MEA, Azevedo RA, Fidalgo F. Plants facing oxidative challenges—a little help from the antioxidant networks. Environ Exp Bot. 2019;161:4–25. doi: 10.1016/j.envexpbot.2018.12.009. DOI

Sugawara E, Nikaido H. Properties of AdeABC and AdeIJK efflux systems of Acinetobacter baumannii compared with those of the AcrAB-TolC system of Escherichia coli. Antimicrob Agents Chemother. 2014;58:7250–7257. doi: 10.1128/AAC.03728-14. PubMed DOI PMC

Suzuki N, Koussevitzky S, Mittler R, Miller G. ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ. 2012;35:259–270. doi: 10.1111/j.1365-3040.2011.02336.x. PubMed DOI

Todaka D, Zhao Y, Yoshida T, et al. Temporal and spatial changes in gene expression, metabolite accumulation and phytohormone content in rice seedlings grown under drought stress conditions. Plant J. 2017;90:61–78. doi: 10.1111/tpj.13468. PubMed DOI

Van Breusegem F, Dat JF. Reactive oxygen species in plant cell death. Plant Physiol. 2006;141:384–390. doi: 10.1104/pp.106.078295. PubMed DOI PMC

Venuprasad R, Lafitte HR, Atlin GN. Response to direct selection for grain yield under drought stress in rice. Crop Sci. 2007;47:285–293. doi: 10.2135/cropsci2006.03.0181. DOI

Venuprasad R, Bool ME, Quiatchon L, Atlin GN. A QTL for rice grain yield in aerobic environments with large effects in three genetic backgrounds. Theor Appl Genet. 2012;124:323–332. doi: 10.1007/s00122-011-1707-4. PubMed DOI

Verslues PE, Juenger TE. Drought, metabolites, and Arabidopsis natural variation: a promising combination for understanding adaptation to water-limited environments. Curr Opin Plant Biol. 2011;14:240–245. doi: 10.1016/j.pbi.2011.04.006. PubMed DOI

Wang DR, Han R, Wolfrum EJ, McCouch SR. The buffering capacity of stems: genetic architecture of nonstructural carbohydrates in cultivated Asian rice, Oryza sativa. New Phytol. 2017;215:658–671. doi: 10.1111/nph.14614. PubMed DOI PMC

Watanabe M, Balazadeh S, Tohge T, et al. Comprehensive dissection of spatiotemporal metabolic shifts in primary, secondary, and lipid metabolism during developmental senescence in Arabidopsis. Plant Physiol. 2013;162:1290–1310. doi: 10.1104/pp.113.217380. PubMed DOI PMC

Wingler A, Purdy S, MacLean JA, Pourtau N. The role of sugars in integrating environmental signals during the regulation of leaf senescence. J Exp Bot. 2006;57:391–399. doi: 10.1093/jxb/eri279. PubMed DOI

Yang J, Zhang J, Wang Z, et al. Remobilization of carbon reserves in response to water deficit during grain filling of rice. F Crop Res. 2001;71:47–55. doi: 10.1016/S0378-4290(01)00147-2. DOI

Yoshida S. Physiological aspects of grain yield. Annu Rev Plant Physiol. 1972;23:437–464. doi: 10.1146/annurev.pp.23.060172.002253. DOI

You J, Chan Z. ROS regulation during abiotic stress responses in crop plants. Front Plant Sci. 2015;6:1092. doi: 10.3389/fpls.2015.01092. PubMed DOI PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...