Mixotrophy in orchids: facts, questions, and perspectives

. 2025 Jun ; 246 (5) : 1912-1921. [epub] 20250407

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid40195594

While orchids germinate thanks to carbon from their symbiotic fungi, variable carbon exchanges exist between adult orchids and their mycorrhizal fungi. Although some truly autotrophic orchids reward their fungi with carbon at adulthood, some species remain achlorophyllous and fully dependent on fungal carbon (mycoheterotrophy). Others are photosynthetic but also import fungal carbon: The so-called mixotrophic (MX) orchids rely on fungi of diverse taxonomy and ecology. Here, we classify MX nutrition of orchids into three types. Type I mixotrophy associates with diverse Asco- and Basidiomycota that are either saprotrophic or ectomycorrhizal, entailing enrichment of the orchids in 2H, 13C, and 15N. The two other types associate with rhizoctonias, a polyphyletic assemblage of Basidiomycotas that is ancestrally mycorrhizal in orchids. Type II mixotrophy associates with rhizoctonias that secondarily evolved into saprotrophic or ectomycorrhizal ecology, and thus enrich the orchid in 2H, 13C, and 15N. Type III mixotrophy, which remains debated, associates with rhizoctonias that have retained their ancestral lifestyle, that is saprotrophic and/or endophytic in nonorchids, and only entail orchid enrichment in 2H and 15N. Based on a case study of achlorophyllous variants in Mediterranean Ophrys and on published data, we discuss the distinct nature and research perspectives of type III mixotrophy.

Zobrazit více v PubMed

Abadie J‐C, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse M‐A. 2006. Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Canadian Journal of Botany 84: 1462–1477.

Baan J, Holloway‐Phillips M, Nelson DB, Kahmen A. 2023a. The metabolic sensitivity of hydrogen isotope fractionation differs between plant compounds. Phytochemistry 207: 113563. PubMed

Baan J, Holloway‐Phillips M, Nelson DB, Kahmen A. 2023b. Species and biosynthetic effects cause uncorrelated variation in oxygen and hydrogen isotope compositions of plant organic compounds. Geochimica et Cosmochimica Acta 352: 1–13.

Bougoure JJ, Brundrett MC, Grierson PF. 2010. Carbon and nitrogen supply to the underground orchid, Rhizanthella gardneri . New Phytologist 186: 947–956. PubMed

Cameron DD, Johnson I, Read DJ, Leake JR. 2008. Giving and receiving: measuring the carbon cost of mycorrhizas in the green orchid, Goodyera repens . New Phytologist 180: 176–184. PubMed

Cameron DD, Leake JR, Read DJ. 2006. Mutualistic mycorrhiza in orchids: evidence from plant–fungus carbon and nitrogen transfers in the green‐leaved terrestrial orchid Goodyera repens . New Phytologist 171: 405–416. PubMed

Cernusak LA, Tcherkez G, Keitel C, Cornwell WK, Santiago LS, Knohl A, Barbour MM, Williams DG, Reich PB, Ellsworth DS. 2009. Why are non‐photosynthetic tissues generally 13C enriched compared with leaves in C3 plants? Review and synthesis of current hypotheses. Functional Plant Biology 36: 199–213. PubMed

Chikaraishi Y, Naraoka H, Poulson SR. 2004. Hydrogen and carbon isotopic fractionations of lipid biosynthesis among terrestrial (C3, C4 and CAM) and aquatic plants. Phytochemistry 65: 1369–1381. PubMed

Dearnaley J, Perotto S, Selosse M. 2016. Structure and development of orchid mycorrhizas. In: Martin F, ed. Molecular mycorrhizal symbiosis. Wiley, Hoboken, NJ, USA: Wiley, 63–86.

Dearnaley JDW, Martos F, Selosse M‐A. 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, ed. The Mycota IX: fungal associations. Berlin, Heidelberg, Germany: Springer‐Verlag, 207–230.

Gebauer G, Meyer M. 2003. 15N and 13C natural abundance of autotrophic and myco‐heterotrophic orchids provides insight into nitrogen and carbon gain from fungal association. New Phytologist 160: 209–223. PubMed

Gebauer G, Preiss K, Gebauer AC. 2016. Partial mycoheterotrophy is more widespread among orchids than previously assumed. New Phytologist 211: 11–15. PubMed

Giesemann P, Eichenberg D, Stöckel M, Seifert LF, Gomes SIF, Merckx VSFT, Gebauer G. 2020. Dark septate endophytes and arbuscular mycorrhizal fungi (Paris‐morphotype) affect the stable isotope composition of ‘classically’ non‐mycorrhizal plants. Functional Ecology 34: 2453–2466.

Giesemann P, Rasmussen HN, Gebauer G. 2021. Partial mycoheterotrophy is common among chlorophyllous plants with Paris‐type arbuscular mycorrhiza. Annals of Botany 127: 645–653. PubMed PMC

Girlanda M, Segreto R, Cafasso D, Liebel HT, Rodda M, Ercole E, Cozzolino S, Gebauer G, Perotto S. 2011. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany 98: 1148–1163. PubMed

Girlanda M, Selosse MA, Cafasso D, Brilli F, Delfine S, Fabbian R, Ghignone S, Pinelli P, Segreto R, Loreto F et al. 2006. Inefficient photosynthesis in the Mediterranean orchid Limodorum abortivum is mirrored by specific association to ectomycorrhizal Russulaceae. Molecular Ecology 15: 491–504. PubMed

Givnish TJ, Spalink D, Ames M, Lyon SP, Hunter SJ, Zuluaga A, Iles WJD, Clements MA, Arroyo MTK, Leebens‐Mack J et al. 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B: Biological Sciences 282: 20151553. PubMed PMC

Gomes SI, Giesemann P, Klink S, Hunt C, Suetsugu K, Gebauer G. 2023. Stable isotope natural abundances of fungal hyphae extracted from the roots of arbuscular mycorrhizal mycoheterotrophs and rhizoctonia‐associated orchids. New Phytologist 239: 1166–1172. PubMed

Gonneau C, Jersáková J, De Tredern E, Till‐Bottraud I, Saarinen K, Sauve M, Roy M, Hájek T, Selosse M. 2014. Photosynthesis in perennial mixotrophic Epipactis spp. (Orchidaceae) contributes more to shoot and fruit biomass than to hypogeous survival. Journal of Ecology 102: 1183–1194.

He D, Ladd SN, Saunders CJ, Mead RN, Jaffé R. 2020. Distribution of n‐alkanes and their δ2H and δ13C values in typical plants along a terrestrial‐coastal‐oceanic gradient. Geochimica et Cosmochimica Acta 281: 31–52.

Holloway‐Phillips M, Baan J, Nelson DB, Lehmann MM, Tcherkez G, Kahmen A. 2022. Species variation in the hydrogen isotope composition of leaf cellulose is mostly driven by isotopic variation in leaf sucrose. Plant, Cell & Environment 45: 2636–2651. PubMed

Hynson NA, Madsen TP, Selosse M‐A, Adam IKU, Ogura‐Tsujita Y, Roy M, Gebauer G. 2013. The physiological ecology of mycoheterotrophy. In: Merckx V, ed. Mycoheterotrophy. New York, NY, USA: Springer New York, 297–342.

Hynson NA, Preiss K, Gebauer G, Bruns TD. 2009. Isotopic evidence of full and partial myco‐heterotrophy in the plant tribe Pyroleae (Ericaceae). New Phytologist 182: 719–726. PubMed

Jąkalski M, Minasiewicz J, Caius J, May M, Selosse M‐A, Delannoy E. 2021. The genomic impact of mycoheterotrophy in orchids. Frontiers in Plant Science 12: 632033. PubMed PMC

Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse M. 2005. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium . New Phytologist 166: 639–653. PubMed

Lallemand F, Figura T, Damesin C, Fresneau C, Griveau C, Fontaine N, Zeller B, Selosse M‐A. 2019a. Mixotrophic orchids do not use photosynthates for perennial underground organs. New Phytologist 221: 12–17. PubMed

Lallemand F, Martin‐Magniette M, Gilard F, Gakière B, Launay‐Avon A, Delannoy É, Selosse M. 2019b. In situ transcriptomic and metabolomic study of the loss of photosynthesis in the leaves of mixotrophic plants exploiting fungi. The Plant Journal 98: 826–841. PubMed

Lallemand F, Robionek A, Courty P‐E, Selosse M‐A. 2018. The 13C content of the orchid Epipactis palustris (L.) Crantz responds to light as in autotrophic plants. Botany Letters 165: 265–273.

Látalová K, Baláž M. 2010. Carbon nutrition of mature green orchid Serapias strictiflora and its mycorrhizal fungus Epulorhiza sp. Biologia Plantarum 54: 97–104.

Lehmann MM, Schuler P, Werner RA, Saurer M, Wiesenberg GLB, Cormier M‐A. 2024. Biochemical and biophysical drivers of the hydrogen isotopic composition of carbohydrates and acetogenic lipids. Science Advances 10: eadl3591. PubMed PMC

Liebel HT, Bidartondo MI, Preiss K, Segreto R, Stöckel M, Rodda M, Gebauer G. 2010. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. American Journal of Botany 97: 903–912. PubMed

Liu H, Yang C, Li L. 2016. Shade‐induced stem elongation in rice seedlings: implication of tissue‐specific phytohormone regulation. Journal of Integrative Plant Biology 58: 614–617. PubMed

Magkourilou E, Bell CA, Daniell TJ, Field KJ. 2024. The functionality of arbuscular mycorrhizal networks across scales of experimental complexity and ecological relevance. Functional Ecology, in press. doi: 10.1111/1365-2435.14618 DOI

Matsuda Y, Shimizu S, Mori M, Ito S, Selosse M. 2012. Seasonal and environmental changes of mycorrhizal associations and heterotrophy levels in mixotrophic Pyrola japonica (Ericaceae) growing under different light environments. American Journal of Botany 99: 1177–1188. PubMed

May M, Jąkalski M, Novotná A, Dietel J, Ayasse M, Lallemand F, Figura T, Minasiewicz J, Selosse M‐A. 2020. Three‐year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza 30: 51–61. PubMed

Mayor JR, Schuur EAG, Henkel TW. 2009. Elucidating the nutritional dynamics of fungi using stable isotopes. Ecology Letters 12: 171–183. PubMed

Merckx V. 2013. Mycoheterotrophy: the biology of plants living on fungi. New York, NY, USA: Springer.

Minasiewicz J, Zwolicki A, Figura T, Novotná A, Bocayuva MF, Jersáková J, Selosse M‐A. 2023. Stoichiometry of carbon, nitrogen and phosphorus is closely linked to trophic modes in orchids. BMC Plant Biology 23: 422. PubMed PMC

Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sánchez‐García M, Morin E, Andreopoulos B, Barry KW, Bonito G. 2020. Large‐scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications 11: 5125. PubMed PMC

Petrolli R, Zinger L, Perez‐Lamarque B, Collobert G, Griveau C, Pailler T, Selosse M, Martos F. 2022. Spatial turnover of fungi and partner choice shape mycorrhizal networks in epiphytic orchids. Journal of Ecology 110: 2568–2584.

Rasmussen HN. 1995. Terrestrial orchids: from seed to mycotrophic plant. Cambridge, UK: Cambridge University Press.

Read DJ, Haggar J, Magkourilou E, Durant E, Johnson D, Leake JR, Field KJ. 2024. Photosynthate transfer from an autotrophic orchid to conspecific heterotrophic protocorms through a common mycorrhizal network. New Phytologist 243: 398–406. PubMed

Roy M, Gonneau C, Rocheteau A, Berveiller D, Thomas J‐C, Damesin C, Selosse M‐A. 2013. Why do mixotrophic plants stay green? A comparison between green and achlorophyllous orchid individuals in situ . Ecological Monographs 83: 95–117.

Sakae K, Kawai S, Kitagami Y, Matsuo N, Selosse M‐A, Tanikawa T, Matsuda Y. 2024. Effects of fungicide treatments on mycorrhizal communities and carbon acquisition in the mixotrophic Pyrola japonica (Ericaceae). Mycorrhiza 34: 293–302. PubMed

Schatz B, Geoffroy A, Dainat B, Bessière J, Buatois B, Hossaert‐McKey M, Selosse M. 2010. A case study of modified interactions with symbionts in a hybrid mediterranean orchid. American Journal of Botany 97: 1278–1288. PubMed

Schiebold JM‐I, Bidartondo MI, Karasch P, Gravendeel B, Gebauer G. 2017. You are what you get from your fungi: nitrogen stable isotope patterns in Epipactis species. Annals of Botany 119: 1085–1095. PubMed PMC

Schuler P, Vitali V, Saurer M, Gessler A, Buchmann N, Lehmann MM. 2023. Hydrogen isotope fractionation in carbohydrates of leaves and xylem tissues follows distinct phylogenetic patterns: a common garden experiment with 73 tree and shrub species. New Phytologist 239: 547–561. PubMed

Schweiger JM‐I, Bidartondo MI, Gebauer G. 2018. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Functional Ecology 32: 870–881.

Selosse M, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174: 864–878. PubMed

Selosse M‐A, Faccio A, Scappaticci G, Bonfante P. 2004. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including Truffles. Microbial Ecology 47: 416–426. PubMed

Selosse M‐A, Martos F. 2014. Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends in Plant Science 19: 683–685. PubMed

Selosse M‐A, Petrolli R, Mujica MI, Laurent L, Perez‐Lamarque B, Figura T, Bourceret A, Jacquemyn H, Li T, Gao J et al. 2022. The waiting room hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes? Annals of Botany 129: 259–270. PubMed PMC

Selosse M‐A, Richard F, He X, Simard SW. 2006. Mycorrhizal networks: des liaisons dangereuses? Trends in Ecology & Evolution 21: 621–628. PubMed

Selosse M‐A, Roy M. 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Science 14: 64–70. PubMed

Shefferson RP, Roy M, Püttsepp Ü, Selosse M. 2016. Demographic shifts related to mycoheterotrophy and their fitness impacts in two Cephalanthera species. Ecology 97: 1452–1462. PubMed

Stöckel M, Těšitelová T, Jersáková J, Bidartondo MI, Gebauer G. 2014. Carbon and nitrogen gain during the growth of orchid seedlings in nature. New Phytologist 202: 606–615. PubMed

Suetsugu K, Haraguchi TF, Okada H, Tayasu I. 2021a. Stigmatodactylus sikokianus (Orchidaceae) mainly acquires carbon from decaying litter through association with a specific clade of Serendipitaceae. New Phytologist 231: 1670–1675. PubMed

Suetsugu K, Haraguchi TF, Tayasu I. 2022. Novel mycorrhizal cheating in a green orchid: Cremastra appendiculata depends on carbon from deadwood through fungal associations. New Phytologist 235: 333–343. PubMed

Suetsugu K, Matsubayashi J. 2021a. Evidence for mycorrhizal cheating in Apostasia nipponica, an early‐diverging member of the Orchidaceae. New Phytologist 229: 2302–2310. PubMed

Suetsugu K, Matsubayashi J. 2021b. Subterranean morphology modulates the degree of mycoheterotrophy in a green orchid Calypso bulbosa exploiting wood‐decaying fungi. Functional Ecology 35: 2305–2315.

Suetsugu K, Matsubayashi J. 2022. Foliar chlorophyll concentration modulates the degree of fungal exploitation in a rhizoctonia‐associated orchid. Journal of Experimental Botany 73: 4204–4213. PubMed

Suetsugu K, Matsubayashi J, Okada H. 2024a. Stable isotope signatures illuminate diverse nutritional strategies in rhizoctonias and their orchid partners. Plant, Cell & Environment 48: 744–792. PubMed

Suetsugu K, Ohta T, Tayasu I. 2024b. Partial mycoheterotrophy in the leafless orchid Eulophia zollingeri specialized on wood‐decaying fungi. Mycorrhiza 34: 33–44. PubMed

Suetsugu K, Yamato M, Matsubayashi J, Tayasu I. 2019. Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia. Molecular Ecology 28: 4290–4299. PubMed

Suetsugu K, Yamato M, Matsubayashi J, Tayasu I. 2021b. Partial and full mycoheterotrophy in green and albino phenotypes of the slipper orchid Cypripedium debile . Mycorrhiza 31: 301–312. PubMed

Tedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83–99.

Van Der Heijden MGA, Martin FM, Selosse M, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406–1423. PubMed

Veldre V, Abarenkov K, Bahram M, Martos F, Selosse M‐A, Tamm H, Kõljalg U, Tedersoo L. 2013. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology 6: 256–268.

Vogt‐Schilb H, Těšitelová T, Kotilínek M, Sucháček P, Kohout P, Jersáková J. 2020. Altered rhizoctonia assemblages in grasslands on ex‐arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytologist 227: 1200–1212. PubMed

Wang D, Jacquemyn H, Gomes SIF, Vos RA, Merckx VSFT. 2021. Symbiont switching and trophic mode shifts in Orchidaceae. New Phytologist 231: 791–800. PubMed PMC

Weiß M, Waller F, Zuccaro A, Selosse M. 2016. Sebacinales – one thousand and one interactions with land plants. New Phytologist 211: 20–40. PubMed

Yagame T, Lallemand F, Selosse M‐A, Funabiki E, Yukawa T. 2021. Mycobiont diversity and first evidence of mixotrophy associated with Psathyrellaceae fungi in the chlorophyllous orchid Cremastra variabilis . Journal of Plant Research 134: 1213–1224. PubMed

Yagame T, Orihara T, Selosse M, Yamato M, Iwase K. 2012. Mixotrophy of Platanthera minor, an orchid associated with ectomycorrhiza‐forming Ceratobasidiaceae fungi. New Phytologist 193: 178–187. PubMed

Yagame T, Yamato M, Suzuki A, Iwase K. 2008. Ceratobasidiaceae mycorrhizal fungi isolated from nonphotosynthetic orchid Chamaegastrodia sikokiana . Mycorrhiza 18: 97–101. PubMed

Yagi R, Haraguchi TF, Tayasu I, Suetsugu K. 2024. Do exchangeable hydrogens affect the evaluation of partial mycoheterotrophy in orchids? Insights from δ2H analysis in bulk, α‐cellulose, and cellulose nitrate samples. New Phytologist 243: 2430–2441. PubMed

Zahn FE, Söll E, Chapin TK, Wang D, Gomes SIF, Hynson NA, Pausch J, Gebauer G. 2023. Novel insights into orchid mycorrhiza functioning from stable isotope signatures of fungal pelotons. New Phytologist 239: 1449–1463. PubMed

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...