The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes?
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
34718377
PubMed Central
PMC8835631
DOI
10.1093/aob/mcab134
PII: 6414392
Knihovny.cz E-zdroje
- Klíčová slova
- Ectomycorrhizal fungi, endophytism, mixotrophy, mycoheterotrophy, rhizoctonias, saprobic fungi,
- MeSH
- čekárny MeSH
- endofyty MeSH
- fylogeneze MeSH
- mykorhiza * MeSH
- Orchidaceae * mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
BACKGROUND: As in most land plants, the roots of orchids (Orchidaceae) associate with soil fungi. Recent studies have highlighted the diversity of the fungal partners involved, mostly within Basidiomycotas. The association with a polyphyletic group of fungi collectively called rhizoctonias (Ceratobasidiaceae, Tulasnellaceae and Serendipitaceae) is the most frequent. Yet, several orchid species target other fungal taxa that differ from rhizoctonias by their phylogenetic position and/or ecological traits related to their nutrition out of the orchid roots (e.g. soil saprobic or ectomycorrhizal fungi). We offer an evolutionary framework for these symbiotic associations. SCOPE: Our view is based on the 'Waiting Room Hypothesis', an evolutionary scenario stating that mycorrhizal fungi of land flora were recruited from ancestors that initially colonized roots as endophytes. Endophytes biotrophically colonize tissues in a diffuse way, contrasting with mycorrhizae by the absence of morphological differentiation and of contribution to the plant's nutrition. The association with rhizoctonias is probably the ancestral symbiosis that persists in most extant orchids, while during orchid evolution numerous secondary transitions occurred to other fungal taxa. We suggest that both the rhizoctonia partners and the secondarily acquired ones are from fungal taxa that have broad endophytic ability, as exemplified in non-orchid roots. We review evidence that endophytism in non-orchid plants is the current ecology of many rhizoctonias, which suggests that their ancestors may have been endophytic in orchid ancestors. This also applies to the non-rhizoctonia fungi that were secondarily recruited by several orchid lineages as mycorrhizal partners. Indeed, from our review of the published literature, they are often detected, probably as endophytes, in extant rhizoctonia-associated orchids. CONCLUSION: The orchid family offers one of the best documented examples of the 'Waiting Room Hypothesis': their mycorrhizal symbioses support the idea that extant mycorrhizal fungi have been recruited among endophytic fungi that colonized orchid ancestors.
Zobrazit více v PubMed
Abadie JC, Püttsepp Ü, Gebauer G, Faccio A, Bonfante P, Selosse MA. 2006. Cephalanthera longifolia (Neottieae, Orchidaceae) is mixotrophic: a comparative study between green and nonphotosynthetic individuals. Canadian Journal of Botany 84: 1462–1477.
Almario J, Jeena G, Wunder J, et al. . 2017. Root-associated fungal microbiota of nonmycorrhizal Arabis alpina and its contribution to plant phosphorus nutrition. Proceedings of the National Academy of Sciences 114: E9403–E9412. PubMed PMC
Bauer R, Begerow D, Sampaio JP, Weiß M, Oberwinkler F. 2006. The simple-septate basidiomycetes: a synopsis. Mycological Progress 5: 41–66.
Bayman P, Otero JT. 2006. Microbial endophytes of orchid roots. In: Schulz BJE, Boyle C, Sieber TN, eds. Microbial root endophytes. New York: Springer, 153–178.
Bayman P, Mosquera-Espinosa AT, Saladini-Aponte CM, Hurtado-Guevara NC, Viera-Ruiz NL. 2016. Age-dependent mycorrhizal specificity in an invasive orchid, Oeceoclades maculata. American Journal of Botany 103: 1880–1889. PubMed
Bunch WD, Cowden CC, Wurzburger N, Shefferson RP. 2013. Geography and soil chemistry drive the distribution of fungal associations in lady’s slipper orchid, Cypripedium acaule. Botany 91: 850–856.
Calevo J, Voyron S, Adamo M, Alibrandi P, Perotto S, Girlanda M. 2021. Can orchid mycorrhizal fungi be persistently harbored by the plant host? Fungal Ecology 53: 101071.
Crous PW, Wingfield MJ, Guarro J, et al. . 2015. Fungal Planet description sheets: 320–370. Persoonia 34: 167–266. PubMed PMC
Currah RS, Sherburne R. 1992. Septal ultrastructure of some fungal endophytes from boreal orchid mycorrhizas. Mycological Research 96: 583–587.
Dearnaley JDW, Martos F, Selosse MA. 2012. Orchid mycorrhizas: molecular ecology, physiology, evolution and conservation aspects. In: Hock B, ed. Fungal associations, 2nd Edition. The Mycota IX. Berlin: Springer, 207–230.
Dearnaley J, Perotto S, Selosse MA. 2016. Structure and development of orchid mycorrhizas. In: Martin F, ed. Molecular mycorrhizal symbiosis. Hoboken: John Wiley & Sons, 63–86.
Duffy KJ, Waud M, Schatz B, Petanidou T, Jacquemyn H. 2019. Latitudinal variation in mycorrhizal diversity associated with a European orchid. Journal of Biogeography: 46: 968–980.
Ercole E, Adamo M, Rodda M, Gebauer G, Girlanda M, Perotto S. 2015. Temporal variation in mycorrhizal diversity and carbon and nitrogen stable isotope abundance in the wintergreen meadow orchid Anacamptis morio. New Phytologist 205: 1308–1319. PubMed
Esposito F, Jacquemyn H, Waud M, Tyteca D. 2016. Mycorrhizal fungal diversity and community composition in two closely related Platanthera (orchidaceae) species. PLoS ONE 11: e0164108. PubMed PMC
Fan L, Guo SX, Cao WQ, Xiao PG, Xu JT. 1996. Isolation, culture, identification and biological activity of Mycena orchidicola sp. nov. in Cymbidium sinense (Orchidaceae). Acta Mycologica Sinica 15: 251–255.
Floudas D, Binder M, Riley R, et al. . 2012. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science 336: 1715–1719. PubMed
Fritsche Y, Lopes ME, Selosse M-A, et al. . 2021. Serendipita restingae sp. nov. (Sebacinales): an orchid mycorrhizal agaricomycete with wide host range. Mycorrhiza 31: 1–15. PubMed
Gill SS, Gill R, Trivedi DK, et al. . 2016. Piriformospora indica: potential and significance in plant stress tolerance. Frontiers in Microbiology 7: 332. PubMed PMC
Girlanda M, Segreto R, Cafasso D, et al. . 2011. Photosynthetic Mediterranean meadow orchids feature partial mycoheterotrophy and specific mycorrhizal associations. American Journal of Botany 98: 1148–1163. PubMed
Givnish TJ, Spalink D, Ames M, et al. . 2015. Orchid phylogenomics and multiple drivers of their extraordinary diversification. Proceedings of the Royal Society B 282: 20151553. PubMed PMC
González-Chávez M del CA, Torres-Cruz TJ, Sánchez SA, Carrillo-González R, Carrillo-López LM, Porras-Alfaro A. 2018. Microscopic characterization of orchid mycorrhizal fungi: Scleroderma as a putative novel orchid mycorrhizal fungus of Vanilla in different crop systems. Mycorrhiza 28: 147–157. PubMed
Guo SX, Fan L, Cao WQ, Xu JT, Xiao PG. 1997. Mycena anoectochila sp. nov. isolated from mycorrhizal roots of Anoectochilus roxburghii from Xishuangbanna, China. Mycologia 89: 952–954.
Han JY, Xiao HF, Gao JY. 2016. Seasonal dynamics of mycorrhizal fungi in Paphiopedilum spicerianum (Rchb. f) Pfitzer - A critically endangered orchid from China. Global Ecology and Conservation 6: 327–338.
Hatté C, Zazzo A, Selosse MA. 2020. The radiocarbon age of mycoheterotrophic plants. New Phytologist 227: 1284–1288. PubMed
Henry C, Raivoarisoa JF, Razafimamonjy A, et al. . 2017. Transfer to forest nurseries significantly affects mycorrhizal community compositions of Asteropeia macphersonii wildings. Mycorrhiza 27: 321–330. PubMed
Hibbett DS, Matheny PB. 2009. The relative ages of ectomycorrhizal mushrooms and their plant hosts estimated using Bayesian relaxed molecular clock analyses. BMC Biology 7: 13. PubMed PMC
Hynson NA, Madsen TP, Selosse MA, et al. . 2013. The physiological ecology of mycoheterotrophy. In: Merckx V, ed. Mycoheterotrophy: the biology of plants living on fungi. Berlin: Springer, 297–342.
Irwin MJ, Bougoure JJ, Dearnaley JDW. 2007. Pterostylis nutans (Orchidaceae) has a specific association with two Ceratobasidium root-associated fungi across its range in eastern Australia. Mycoscience 48: 231–239.
Jacquemyn H, Brys R, Merckx VSFT, Waud M, Lievens B, Wiegand T. 2014. Coexisting orchid species have distinct mycorrhizal communities and display strong spatial segregation. New Phytologist 202: 616–627. PubMed
Jacquemyn H, Brys R, Waud M, Evans A, Figura T, Selosse MA. 2021. Mycorrhizal communities and isotope signatures in two partially mycoheterotrophic orchids. Frontiers in Plant Science 12: 618140. PubMed PMC
Jacquemyn H, Honnay O, Cammue BPA, Brys R, Lievens B. 2010. Low specificity and nested subset structure characterize mycorrhizal associations in five closely related species of the genus Orchis. Molecular Ecology 19: 4086–4095. PubMed
Jacquemyn H, Merckx VSFT. 2019. Mycorrhizal symbioses and the evolution of trophic modes in plants. Journal of Ecology 107: 1567–1581.
Jacquemyn H, Merckx V, Brys R, et al. . 2011. Analysis of network architecture reveals phylogenetic constraints on mycorrhizal specificity in the genus Orchis (Orchidaceae). New Phytologist 192: 518–528. PubMed
Jacquemyn H, Waud M, Brys R, et al. . 2017. Mycorrhizal associations and trophic modes in coexisting orchids: an ecological continuum between auto- and mixotrophy. Frontiers in Plant Science 8: 1497. PubMed PMC
Jacquemyn H, Waud M, Lievens B, Brys R. 2016a. Differences in mycorrhizal communities between Epipactis palustris, E. helleborine and its presumed sister species E. neerlandica. Annals of Botany 118: 105–114. PubMed PMC
Jacquemyn H, Waud M, Merckx VSFT, et al. . 2016. b. Habitat-driven variation in mycorrhizal communities in the terrestrial orchid genus Dactylorhiza. Scientific Reports 6: 37182. PubMed PMC
Johnson LJAN, Gónzalez-Chávez M del CA, Carrillo-González R, Porras-Alfaro A, Mueller GM. 2021. Vanilla aerial and terrestrial roots host rich communities of orchid mycorrhizal and ectomycorrhizal fungi. Plants, People, Planet 3: 541–552.
Julou T, Burghardt B, Gebauer G, Berveiller D, Damesin C, Selosse MA. 2005. Mixotrophy in orchids: insights from a comparative study of green individuals and nonphotosynthetic individuals of Cephalanthera damasonium. New Phytologist 166: 639–653. PubMed
Kartzinel TR, Trapnell DW, Shefferson RP. 2013. Critical importance of large native trees for conservation of a rare neotropical epiphyte. Journal of Ecology 101: 1429–1438.
Kaur J, Phillips C, Sharma J. 2021. Host population size is linked to orchid mycorrhizal fungal communities in roots and soil, which are shaped by microenvironment. Mycorrhiza 30: 17–30. PubMed
Kohler A, Kuo A, Nagy LG, et al. . 2015. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nature Genetics 47: 410–415. PubMed
Korotkin HB, Swenie RA, Miettinen O, et al. . 2018. Stable isotope analyses reveal previously unknown trophic mode diversity in the Hymenochaetales. American Journal of Botany 105: 1869–1887. PubMed
Kottke I, Garnica S, Herrera P, et al. . 2010. Atractiellomycetes belonging to the ‘rust’ lineage (Pucciniomycotina) form mycorrhizae with terrestrial and epiphytic neotropical orchids. Proceedings of the Royal Society B 277: 1289–1298. PubMed PMC
Kristiansen KA, Freudenstein JV, Rasmussen FN, Rasmussen HN. 2004. Molecular identification of mycorrhizal fungi in Neuwiedia veratrifolia (Orchidaceae). Molecular Phylogenetics and Evolution 33: 251–258. PubMed
Kristiansen KA, Taylor DL, Kjøller R, Rasmussen HN, Rosendahl S. 2001. Identification of mycorrhizal fungi from single pelotons of Dactylorhiza majalis (Orchidaceae) using single-strand conformation polymorphism and mitochondrial ribosomal large subunit DNA sequences. Molecular Ecology 10: 2089–2093. PubMed
Lee YI, Yang CK, Gebauer G. 2015. The importance of associations with saprotrophic non-Rhizoctonia fungi among fully mycoheterotrophic orchids is currently under-estimated: novel evidence from sub-tropical Asia. Annals of Botany 116: 423–435. PubMed PMC
Li T, Yang W, Shimao W, Selosse MA, Gao J. 2021. Progress and prospects of mycorrhizal fungal diversity in orchids. Frontiers in Plant Science 12: 646325. PubMed PMC
Liebel HT, Bidartondo MI, Gebauer G. 2015. Are carbon and nitrogen exchange between fungi and the orchid Goodyera repens affected by irradiance? Annals of Botany 115: 251–261. PubMed PMC
Liebel HT, Bidartondo MI, Preiss K, et al. . 2010. C and N stable isotope signatures reveal constraints to nutritional modes in orchids from the Mediterranean and Macaronesia. American Journal of Botany 97: 903–912. PubMed
Likar M, Bukovnik U, Kreft I, Chrungoo NK, Regvar M. 2008. Mycorrhizal status and diversity of fungal endophytes in roots of common buckwheat (Fagopyrum esculentum) and tartary buckwheat (F. tataricum). Mycorrhiza 18: 309–315. PubMed
Martos F, Dulormne M, Pailler T, et al. . 2009. Independent recruitment of saprotrophic fungi as mycorrhizal partners by tropical achlorophyllous orchids. New Phytologist 184: 668–681. PubMed
Martos F, Munoz F, Pailler T, Kottke I, Gonneau C, Selosse MA. 2012. The role of epiphytism in architecture and evolutionary constraint within mycorrhizal networks of tropical orchids. Molecular Ecology 21: 5098–5109. PubMed
May M, Jąkalski M, Novotná A, et al. . 2020. Three-year pot culture of Epipactis helleborine reveals autotrophic survival, without mycorrhizal networks, in a mixotrophic species. Mycorrhiza 30: 51–61. PubMed
McCormick MK, Whigham DF, O’Neill J. 2004. Mycorrhizal diversity in photosynthetic terrestrial orchids. New Phytologist 163: 425–438. PubMed
Meng YY, Zhang WL, Selosse MA, Gao JY. 2019. Are fungi from adult orchid roots the best symbionts at germination? A case study. Mycorrhiza 29: 541–547. PubMed
Merckx VSFT, ed.2013. Mycoheterotrophy: the biology of plants living on fungi. Berlin: Springer.
Miyauchi S, Kiss E, Kuo Aet al. . 2020. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nature Communications 11: 5125. PubMed PMC
Mutlu VA, Kömpe YÖ. 2020. Mycorrhizal fungi of some Orchis species of Turkey. Pakistan Journal of Botany 52: 687–695.
Newsham KK. 2011. A meta-analysis of plant responses to dark septate root endophytes. New Phytologist 190: 783–793. PubMed
Nomura N, Ogura-Tsujita Y, Gale SWet al. . 2013. The rare terrestrial orchid Nervilia nipponica consistently associates with a single group of novel mycobionts. Journal of Plant Research 126: 613–623. PubMed
Oberwinkler F, Riess K, Bauer R, Kirschner R, Garnica S. 2013. Taxonomic re-evaluation of the Ceratobasidium–Rhizoctonia complex and Rhizoctonia butinii, a new species attacking spruce. Mycological Progress 12: 763–776.
Ogura-Tsujita Y, Gebauer G, Hashimoto T, Umata H, Yukawa T. 2009. Evidence for novel and specialized mycorrhizal parasitism: the orchid Gastrodia confusa gains carbon from saprotrophic Mycena. Proceedings of the Royal Society B 276: 761–767. PubMed PMC
Ogura-Tsujita Y, Yokoyama J, Miyoshi K, Yukawa T. 2012. Shifts in mycorrhizal fungi during the evolution of autotrophy to mycoheterotrophy in Cymbidium (Orchidaceae). American Journal of Botany 99: 1158–1176. PubMed
Oliveira SF, Bocayuva MF, Veloso TGRet al. . 2014. Endophytic and mycorrhizal fungi associated with roots of endangered native orchids from the Atlantic Forest, Brazil. Mycorrhiza 24: 55–64. PubMed
Petrolli R, Vieira CA, Jakalski M, et al. . 2021. A fine-scale spatial analysis of fungal communities on tropical tree bark unveils the epiphytic rhizosphere in orchids. New Phytologist 231: 2002–2014. PubMed
Qin J, Zhang W, Ge ZW, Zhang SB. 2019. Molecular identifications uncover diverse fungal symbionts of Pleione (Orchidaceae). Fungal Ecology 37: 19–29.
Rasmussen HN. 1995. Terrestrial orchids - from seed to mycotrophic plant. Cambridge: Cambridge University Press.
Rodriguez RJ, White JF, Arnold AE, Redman RS. 2009. Fungal endophytes: diversity and functional roles. New Phytologist 182: 314–330. PubMed
Sarsaiya S, Shi J, Chen J. 2019. A comprehensive review on fungal endophytes and its dynamics on Orchidaceae plants: current research, challenges, and future possibilities. Bioengineered 10: 316–334. PubMed PMC
Schiebold JMI, Bidartondo MI, Lenhard F, Makiola A, Gebauer G. 2018. Exploiting mycorrhizas in broad daylight: partial mycoheterotrophy is a common nutritional strategy in meadow orchids. Journal of Ecology 106: 168–178.
Schneider-Maunoury L, Deveau A, Moreno M, et al. . 2020. Two ectomycorrhizal truffles, Tuber melanosporum and T. aestivum, endophytically colonise roots of non-ectomycorrhizal plants in natural environments. New Phytologist 225: 2542–2556. PubMed
Schneider-Maunoury L, Leclercq S, Clément C, et al. . 2018. Is Tuber melanosporum colonizing the roots of herbaceous, non-ectomycorrhizal plants? Fungal Ecology 31: 59–68.
Schweiger JMI, Bidartondo MI, Gebauer G. 2018. Stable isotope signatures of underground seedlings reveal the organic matter gained by adult orchids from mycorrhizal fungi. Functional Ecology 32: 870–881.
Sebastián F, Vanesa S, Eduardo F, Graciela T, Silvana S. 2014. Symbiotic seed germination and protocorm development of Aa achalensis Schltr., a terrestrial orchid endemic from Argentina. Mycorrhiza 24: 35–43. PubMed
Selosse MA, Dubois MP, Alvarez N. 2009. Do Sebacinales commonly associate with plant roots as endophytes? Mycological Research 113: 1062–1069. PubMed
Selosse MA, Martos F. 2014. Do chlorophyllous orchids heterotrophically use mycorrhizal fungal carbon? Trends in Plant Science 19: 683–685. PubMed
Selosse MA, Martos F, Perry BA, Padamsee M, Roy M, Pailler T. 2010. Saprotrophic fungal mycorrhizal symbionts in achlorophyllous orchids: finding treasures among the ‘molecular scraps’? Plant Signaling and Behavior 5: 349–353. PubMed PMC
Selosse MA, Minasiewicz J, Boullard B. 2017. An annotated translation of Noël Bernard’s 1899 article ‘On the germination of Neottia nidus-avis’. Mycorrhiza 27: 611–618. PubMed
Selosse MA, Roy M. 2009. Green plants that feed on fungi: facts and questions about mixotrophy. Trends in Plant Science 14: 64–70. PubMed
Selosse MA, Scappaticci G, Faccio A, Bonfante P, 2004. Chlorophyllous and achlorophyllous specimens of Epipactis microphylla (Neottieae, Orchidaceae) are associated with ectomycorrhizal septomycetes, including truffles. Microbial Ecology 47: 416–426. PubMed
Selosse MA, Schneider-Maunoury L, Martos F. 2018. Time to re-think fungal ecology? Fungal ecological niches are often prejudged. New Phytologist 217: 968–972. PubMed
Selosse MA, Setaro S, Glatard F, Richard F, Urcelay C, Weiß M. 2007. Sebacinales are common mycorrhizal associates of Ericaceae. New Phytologist 174: 864–878. PubMed
Sen R, Hietala AM, Zelmer CD. 1999. Common anastomosis and internal transcribed spacer RFLP groupings in binucleate Rhizoctonia isolates representing root endophytes of Pinus sylvestris, Ceratorhiza spp. from orchid mycorrhizas and a phytopathogenic anastomosis group. New Phytologist 144: 331–341.
Shefferson RP, Cowden CC, McCormick MK, Yukawa T, Ogura-Tsujita Y, Hashimoto T. 2010. Evolution of host breadth in broad interactions: mycorrhizal specificity in East Asian and North American rattlesnake plantains (Goodyera spp.) and their fungal hosts. Molecular Ecology 19: 3008–3017. PubMed
Shefferson RP, Taylor DL, Weiß M, et al. . 2007. The evolutionary history of mycorrhizal specificity among lady’s slipper orchids. Evolution 61: 1380–1390. PubMed
Shefferson RP, Weiß M, Kull T, Taylor DL. 2005. High specificity generally characterizes mycorrhizal association in rare lady’s slipper orchids, genus Cypripedium. Molecular Ecology 14: 613–626. PubMed
Shubin N, Tabin C, Carroll S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457: 818–823. PubMed
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. Cambridge: Elsevier, 2008.
Stark C, Babik W, Durka W. 2009. Fungi from the roots of the common terrestrial orchid Gymnadenia conopsea. Mycological Research 113: 952–959. PubMed
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist 220: 1012–1030. PubMed
Suetsugu K, Haraguchi T, Okada H, Tayasu I. 2021a. Stigmatodactylus sikokianus (Orchidaceae) mainly acquires carbon from decaying litter through association with a specific clade of Serendipitaceae. New Phytologist 231: 1670–1675. PubMed
Suetsugu K, Haraguchi TF, Tayasu I. 2021b. Novel mycorrhizal cheating in a green orchid: Cremastra appendiculata depends on carbon from deadwood through fungal associations. New Phytologist in press. doi: 10.1111/nph.17313. PubMed DOI
Suetsugu K, Matsubayashi J. 2021a. Evidence for mycorrhizal cheating in Apostasia nipponica, an early-diverging member of the Orchidaceae. New Phytologist 229: 2302–2310. PubMed
Suetsugu K, Matsubayashi J. 2021b. Subterranean morphology modulates the degree of mycoheterotrophy in a green orchid Calypso bulbosa exploiting wood-decaying fungi. Functional Ecology 35: 2305–2315.
Suetsugu K, Matsubayashi J, Tayasu I. 2020. Some mycoheterotrophic orchids depend on carbon from dead wood: novel evidence from a radiocarbon approach. New Phytologist 227: 1519–1529. PubMed
Suetsugu K, Yamato M, Matsubayashi J, Tayasu I. 2019. Comparative study of nutritional mode and mycorrhizal fungi in green and albino variants of Goodyera velutina, an orchid mainly utilizing saprotrophic rhizoctonia. Molecular Ecology 28: 4290–4299. PubMed
Suetsugu K, Yamato M, Matsubayashi J, Tayasu I. 2021c. Partial and full mycoheterotrophy in green and albino phenotypes of the slipper orchid Cypripedium debile. Mycorrhiza, 31: 301–312. PubMed
Tedersoo L, Smith ME. 2013. Lineages of ectomycorrhizal fungi revisited: foraging strategies and novel lineages revealed by sequences from belowground. Fungal Biology Reviews 27: 83–99.
Těšitelová T, Jersáková J, Roy M, et al. . 2013. Ploidy-specific symbiotic interactions: divergence of mycorrhizal fungi between cytotypes of the Gymnadenia conopsea group (Orchidaceae). New Phytologist 199: 1022–1033. PubMed
Thoen E, Harder CB, Kauserud H, et al. . 2020. In vitro evidence of root colonization suggests ecological versatility in the genus Mycena. New Phytologist 227: 601–612. PubMed
Van Der Heijden MGA, Martin FM, Selosse MA, Sanders IR. 2015. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytologist 205: 1406–1423. PubMed
Vanegas-León ML, Sulzbacher MA, Rinaldi AC, Roy M, Selosse MA, Neves MA. 2019. Are Trechisporales ectomycorrhizal or non-mycorrhizal root endophytes? Mycological Progress 18: 1231–1240.
Veldre V, Abarenkov K, Bahram M, et al. . 2013. Evolution of nutritional modes of Ceratobasidiaceae (Cantharellales, Basidiomycota) as revealed from publicly available ITS sequences. Fungal Ecology 6: 256–268.
Vogt-Schilb H, Těšitelová T, Kotilínek M, Sucháček P, Kohout P, Jersáková J. 2020. Altered rhizoctonia assemblages in grasslands on ex-arable land support germination of mycorrhizal generalist, not specialist orchids. New Phytologist 227: 1200–1212. PubMed
Voronina EY, Malysheva EF, Malysheva VF, Dmitriev GV, Tiunov AV, Kovalenko AE. 2018. A mixotrophy is in question: new data on fungal community associated with photosynthetic terrestrial orchid Goodyera repens. Botanica Pacifica 7: 07106.
Voyron S, Ercole E, Ghignone S, Perotto S, Girlanda M. 2017. Fine-scale spatial distribution of orchid mycorrhizal fungi in the soil of host-rich grasslands. New Phytologist 213: 1428–1439. PubMed
Waller RF, Kořený L. 2017. Plastid complexity in dinoflagellates: a picture of gains, losses, replacements and revisions. Advances in Botanical Research 84: 105–143.
Wang D, Jacquemyn H, Gomes SIF, Vos RA, Merckx VSFT. 2021. Symbiont switching and trophic mode shifts in Orchidaceae. New Phytologist 231: 791–800. PubMed PMC
Waterman RJ, Bidartondo MI, Stofberg J, et al. . 2011. The effects of above- and belowground mutualisms on orchid speciation and coexistence. American Naturalist 177: 54–68. PubMed
Waud M, Brys R, Van Landuyt W, Lievens B, Jacquemyn H. 2017. Mycorrhizal specificity does not limit the distribution of an endangered orchid species. Molecular Ecology 26: 1687–1701. PubMed
Weiss M, Sýkorová Z, Garnica S, et al. . 2011. Sebacinales everywhere: previously overlooked ubiquitous fungal endophytes. PLoS ONE 6: e16793. PubMed PMC
Weiss M, Waller F, Zuccaro A, Selosse MA. 2016. Sebacinales – one thousand and one interactions with land plants. New Phytologist 211: 20–40. PubMed
Whitridge H, Southworth D. 2005. Mycorrhizal symbionts of the terrestrial orchid Cypripedium fasciculatum. Selbyana 26: 328–334.
Wilson D. 1995. Endophyte – the evolution of a term, and clarification of its use and definition. Oikos 73: 274–276.
Xing X, Gai X, Liu Q, Hart MM, Guo S. 2014. Mycorrhizal fungal diversity and community composition in a lithophytic and epiphytic orchid. Mycorrhiza 25: 289–296. PubMed
Yagame T, Lallemand F, Selosse MA, Funabiki E, Yukawa T, 2021. Mycobiont diversity and first evidence of mixotrophy associated with Psathyrellaceae fungi in the chlorophyllous orchid Cremastra variabilis. Journal of Plant Research 134: 1213–1224. PubMed
Yuan L, Yang ZL, Li SY, Hu H, Huang JL. 2010a. Mycorrhizal specificity, preference, and plasticity of six slipper orchids from South Western China. Mycorrhiza 20: 559–568. PubMed
Yuan ZL, Zhang CL, Lin FC, Kubicek CP. 2010b. Identity, diversity, and molecular phylogeny of the endophytic mycobiota in the roots of rare wild rice (Oryza granulate) from a nature reserve in Yunnan, China. Applied and Environmental Microbiology 76: 1642–1652. PubMed PMC
Yukawa T, Ogura-Tsujita Y, Shefferson RP, Yokoyama J. 2009. Mycorrhizal diversity in Apostasia (Orchidaceae) indicates the origin and evolution of orchid mycorrhiza. American Journal of Botany 96: 1997–2009. PubMed
Yung L, Bertheau C, Tafforeau F, et al. . 2021. Partial overlap of fungal communities associated with nettle and poplar roots when co-occurring at a trace metal contaminated site. Science of the Total Environment 782: 146692. PubMed
Zeng X, Diao H, Ni Z, et al. . 2021. Temporal variation in community composition of root associated endophytic fungi and carbon and nitrogen stable isotope abundance in two Bletilla species (Orchidaceae). Plants 10: 10010018. PubMed PMC
Zhang L, Chen J, Lv Y, Gao C, Guo S. 2012. Mycena sp., a mycorrhizal fungus of the orchid Dendrobium officinale. Mycological Progress 11: 395–401.
Zuccaro A, Lahrmann U, Güldener U, et al. . 2011. Endophytic life strategies decoded by genome and transcriptome analyses of the mutualistic root symbiont Piriformospora indica. PLoS Pathogens 7: e1002290. PubMed PMC