Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits

. 2020 Oct 12 ; 11 (1) : 5125. [epub] 20201012

Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.

Perzistentní odkaz   https://www.medvik.cz/link/pmid33046698
Odkazy

PubMed 33046698
PubMed Central PMC7550596
DOI 10.1038/s41467-020-18795-w
PII: 10.1038/s41467-020-18795-w
Knihovny.cz E-zdroje

Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.

Architecture et Fonction des Macromolécules Biologiques CNRS Aix Marseille Univ 13009 Marseille France

Beijing Advanced Innovation Centre for Tree Breeding by Molecular Design Institute of Microbiology Beijing Forestry University Tsinghua East Road Haidian District Beijing China

Biology Department Clark University Lasry Center for Bioscience 950 Main Street Worcester MA 01610 USA

Chemical and Biological Processes Development Group Pacific Northwest National Laboratory Richland WA USA

Department Botany and Plant Pathology Oregon State University Corvallis OR USA

Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia

Department of Biology Duke University Durham NC 27708 USA

Department of Biology McMaster University 1280 Main St West Hamilton ON L8S 4K1 Canada

Department of Forest Sciences University of Helsinki Helsinki Finland

Department of Key Laboratory The 2nd Affiliated Hospital of Kunming Medical University 374 Dian Mian Road Kunming 650101 Yunnan China

Department of Life Sciences and Systems Biology University of Torino Viale Mattioli 25 10125 Torino Italy

Department of Plant and Microbial Biology University of California Berkeley Berkeley CA USA

INRAE USC1408 Architecture et Fonction des Macromolécules Biologiques 13009 Marseille France

Institute of Mountain Science Faculty of Agriculture Shinshu University Minami minowa Kami ina Nagano 399 4598 Japan

Laboratoire de Recherche en Sciences Végétales Université de Toulouse CNRS UPS Toulouse France

Laboratory of Environmental Microbiology Institute of Microbiology of the Czech Academy of Sciences Videnska 1083 14220 Praha 4 Czech Republic

Natural History Museum University of Tartu 14a Ravila 50411 Tartu Estonia

Plant Soil and Microbial Sciences Michigan State University East Lansing MI 48824 USA

Swiss Federal Institute for Forest Snow and Landscape Research WSL Zuercherstrasse 111 8903 Birmensdorf Switzerland

Synthetic and Systems Biology Unit Biological Research Centre 6726 Szeged Hungary

The Jacob Blaustein Institutes for Desert Research Bergman Campus Ben Gurion University of The Negev Beer Sheva Israel

Université de Lorraine Institut national de recherche pour l'agriculture l'alimentation et l' environnement UMR Interactions Arbres Microorganismes Centre INRAE Grand Est Nancy 54280 Champenoux France

US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA

Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT Utrecht Netherlands

Zobrazit více v PubMed

Van der, Heijden MGA, Martin FM, Selosse M-A, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI

Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020 doi: 10.1038/s41579-020-0402-3. PubMed DOI

Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016;14:760–773. doi: 10.1038/nrmicro.2016.149. PubMed DOI

Strullu‐Derrien C, Selosse M-A, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol. 2018;220:1012–1030. doi: 10.1111/nph.15076. PubMed DOI

Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–1115. doi: 10.1111/nph.14976. PubMed DOI

Matheny PB, et al. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J. Biogeography. 2009;36:577–592. doi: 10.1111/j.1365-2699.2008.02055.x. DOI

Tedersoo L, Smith ME. Ectomycorrhizal fungal lineages: detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies. Ecol. Stud. 2017;230:125–142. doi: 10.1007/978-3-319-56363-3_6. DOI

Lutzoni F, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 2018;9:5451. doi: 10.1038/s41467-018-07849-9. PubMed DOI PMC

Chang Y, et al. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol. 2019;222:511–525. doi: 10.1111/nph.15613. PubMed DOI

Martin F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92. doi: 10.1038/nature06556. PubMed DOI

Martin F, et al. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature. 2010;464:1033–1038. doi: 10.1038/nature08867. PubMed DOI

Kohler A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI

Peter M, et al. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat. Commun. 2016;7:12662. doi: 10.1038/ncomms12662. PubMed DOI PMC

Hess JI, et al. Rapid divergence of genome architectures following the origin of an ectomycorrhizal symbiosis in the genus Amanita. Mol. Biol. Evol. 2018;35:2786–2804. PubMed PMC

Martino E, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI

Murat C, et al. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat. Ecol. Evol. 2018;2:1956–1965. doi: 10.1038/s41559-018-0710-4. PubMed DOI

Pellitier PT, Zak DR. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytol. 2018;217:68–73. doi: 10.1111/nph.14598. PubMed DOI

Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019;50:237–259. doi: 10.1146/annurev-ecolsys-110617-062331. DOI

Clemmensen KE, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI

Lindahl BD, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. doi: 10.1111/j.1469-8137.2006.01936.x. PubMed DOI

Akroume E, et al. First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass. Environ. Microbiol. 2019;21:197–208. doi: 10.1111/1462-2920.14440. PubMed DOI

Maillard F, Schilling J, Andrews E, Schreiner KM, Kennedy P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol. Ecol. 2020;96:fiz209. doi: 10.1093/femsec/fiz209. PubMed DOI

Koide RT, Sharda JN, Herr JR, Malcolm GM. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol. 2008;178:230–233. doi: 10.1111/j.1469-8137.2008.02401.x. PubMed DOI

Sipos G, et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 2017;1:1931–1941. doi: 10.1038/s41559-017-0347-8. PubMed DOI

Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 2019;94:1857–1880. doi: 10.1111/brv.12538. PubMed DOI

Floudas D, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–1719. doi: 10.1126/science.1221748. PubMed DOI

Morin E, et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol. 2019;222:1584–1598. doi: 10.1111/nph.15687. PubMed DOI

Varga T, et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 2019;3:668–678. doi: 10.1038/s41559-019-0834-1. PubMed DOI PMC

Zak DR, et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 2019;223:33–39. doi: 10.1111/nph.15679. PubMed DOI

Nagy NG, et al. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 2016;33:959–970. doi: 10.1093/molbev/msv337. PubMed DOI

Churchland C, Grayston SJ. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front. Microbiol. 2014;5:261. doi: 10.3389/fmicb.2014.00261. PubMed DOI PMC

Shah F, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 2016;209:1705–1719. doi: 10.1111/nph.13722. PubMed DOI PMC

Krizsán K, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc. Natl Acad. Sci. USA. 2019;116:7409–7418. doi: 10.1073/pnas.1817822116. PubMed DOI PMC

Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–263. doi: 10.1007/s00572-009-0274-x. PubMed DOI

Tedersoo L, Brundrett M. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 2017;230:407–467. doi: 10.1007/978-3-319-56363-3_19. DOI

Bödeker ITM, et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol. 2014;203:245–256. doi: 10.1111/nph.12791. PubMed DOI

Kusuda M, Ueda M, Miyatake K, Terashita T. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience. 2008;49:291–297. doi: 10.1007/S10267-008-0423-7. DOI

Rineau F, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. doi: 10.1038/ismej.2013.91. PubMed DOI PMC

Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI

Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytol. 2018;218:335–343. doi: 10.1111/nph.14971. PubMed DOI PMC

Nicolás C, et al. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J. 2019;13:977–988. doi: 10.1038/s41396-018-0331-6. PubMed DOI PMC

Zhang F, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β‐1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–1321. doi: 10.1111/nph.15113. PubMed DOI

Plett JM, et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl Acad. Sci. USA. 2014;111:8299–8304. doi: 10.1073/pnas.1322671111. PubMed DOI PMC

Kang H, et al. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 2020;22:1435–1446. doi: 10.1111/1462-2920.14959. PubMed DOI

Plett, J. M. et al. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. New Phytol. (2020, in the press). PubMed

Almási, et al. Comparative genomics reveals unique wood‐decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 2019;224:902–915. doi: 10.1111/nph.16032. PubMed DOI

Schurko AM, Neiman M, Logsdon JM. Signs of sex: what we know and how we know it. Trends Ecol. Evol. 2009;24:208–217. doi: 10.1016/j.tree.2008.11.010. PubMed DOI

Frantzeskakis L, et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics. 2018;19:27. doi: 10.1186/s12864-018-4750-6. PubMed DOI PMC

Pellegrin, C., Morin, E., Martin, F. M. & Veneault-Fourrey, C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 6, 1278 (2015). PubMed PMC

Pellegrin C, et al. Laccaria bicolor MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ. Microbiol. 2019;21:3765–3779. doi: 10.1111/1462-2920.14727. PubMed DOI

Liao HL, Chen Y, Vilgalys R. Metatranscriptomic study of common and host-specific patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in the genus Suillus. PLOS Genet. 2018;14:e1007742. doi: 10.1371/journal.pgen.1007742. PubMed DOI PMC

Soltis DE, et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA. 1995;92:2647–2651. doi: 10.1073/pnas.92.7.2647. PubMed DOI PMC

Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 2014;5:4087. doi: 10.1038/ncomms5087. PubMed DOI PMC

Nagy LG, et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 2014;5:4471. doi: 10.1038/ncomms5471. PubMed DOI

Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol. Rev. 2018;93:1778–1794. doi: 10.1111/brv.12418. PubMed DOI

Tedersoo L, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI

Nguyen NH, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI

Gnerre S, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA. 2011;108:1513–1518. doi: 10.1073/pnas.1017351108. PubMed DOI PMC

English AC, et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. doi: 10.1371/journal.pone.0047768. PubMed DOI PMC

Chin C-S, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. doi: 10.1038/nmeth.4035. PubMed DOI PMC

Koren S, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 2012;30:693–700. doi: 10.1038/nbt.2280. PubMed DOI PMC

Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC

Grigoriev IV, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704. doi: 10.1093/nar/gkt1183. PubMed DOI PMC

Kuo, A., Bushnell, B. & Grigoriev, I. V. in Ecological Genomics of Fungi (ed Martin, F.), Advances In Botanical Research, 1–52 (Elsevier Academic Press, Cambridge, United Kingdom, 2014).

Darling, A. E. et al. The design, implementation, and evaluation of mpiBLAST. ClusterWorld Conference and Expo and the 4thInternational Conference on Linux Clusters (The HPC Revolution, CA, USA, 2003).

Miele V, et al. High-quality sequence clustering guided by network topology and multiple alignment likelihood. Bioinformatics. 2012;28:1078–1085. doi: 10.1093/bioinformatics/bts098. PubMed DOI

Löytynoja A, Goldman N. Phylogeny-aware Gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–1635. doi: 10.1126/science.1158395. PubMed DOI

Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC

Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC

Löytynoja, A. In Methods in molecular biology, Vol. 1079, 155–170 (Human Press, Clifton, N.J., 2014). PubMed

Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC

Wattam AR, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–D591. doi: 10.1093/nar/gkt1099. PubMed DOI PMC

Katoh K, Standley DM. MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC

Cruickshank R. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI

Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688e2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI

Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19:301–302. doi: 10.1093/bioinformatics/19.2.301. PubMed DOI

Hibbett DS, Grimaldi D, Donoghue MJ. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. Am. J. Bot. 1997;84:981–991. doi: 10.2307/2446289. PubMed DOI

Lepage BA, Currah RS, Stockey RA, Rothwell GW. Fossil ectomycorrhizae from the Middle Eocene. Am. J. Bot. 1997;84:410–412. doi: 10.2307/2446014. PubMed DOI

Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT. Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia. 2005;97:269–285. doi: 10.1080/15572536.2006.11832862. PubMed DOI

Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC

Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC

Wu Y-C, Rasmussen MD, Bansal MS, Kellis M. TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 2013;62:110–120. doi: 10.1093/sysbio/sys076. PubMed DOI PMC

Mathé C, Fawal N, Roux C, Dunand C. In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Sci. Rep. 2019;9:20373. doi: 10.1038/s41598-019-56774-4. PubMed DOI PMC

Domazet-Lošo T, Brajković J, Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23:533–539. doi: 10.1016/j.tig.2007.08.014. PubMed DOI

Sima FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. Genome analysis BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI

Konietschke, F. Simultane Konfidenzintervalle fuer nichtparametrische relative Kontrasteffekte. PhD thesis, University of Goettingen (2009).

Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137https://CRAN.R-project.org/package=nlme (2018).

Auguie, B. egg:https://cran.r-project.org/web/packages/egg/index.html (2017).

Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI

Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.

Kassambara, A. ggpubr R package: ggplot2-based publication ready plots. R package version 0.2.5.999https://rpkgs.datanovia.com/ggpubr/ (2020).

Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI

Mensy, F. Detecting the effect of biological categories on genome composition. https://github.com/fantin-mesny/Effect-Of-Biological-Categories-On-Genomes-Composition (2020).

Oksanen, J. et al. Vegan: community ecology package. R package version 2.5–6https://CRAN.R-project.org/package=vegan (2019).

Hervé, M. RVAideMemoire: testing and plotting procedures for biostatistics. R package version 0.9-75https://CRAN.R-project.org/package=RVAideMemoire (2020).

Castanera R, et al. Transposable elements versus the fungal genome: Impact on whole-genome architecture and transcriptional profiles. PLoS Genet. 2016;12:e1006108. doi: 10.1371/journal.pgen.1006108. PubMed DOI PMC

Ploner, A. Heatplus: Heatmaps with row and/or column covariates and colored clusters. R package version 2.34.0, https://github.com/alexploner/Heatplus (2020).

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Extreme overall mushroom genome expansion in Mycena s.s. irrespective of plant hosts or substrate specializations

. 2024 Jul 10 ; 4 (7) : 100586. [epub] 20240627

The genus Fomitopsis (Polyporales, Basidiomycota) reconsidered

. 2024 Mar ; 107 () : 149-249. [epub] 20240222

Forest microbiome and global change

. 2023 Aug ; 21 (8) : 487-501. [epub] 20230320

Hidden fairy rings and males-Genetic patterns of natural Burgundy truffle (Tuber aestivum Vittad.) populations reveal new insights into its life cycle

. 2022 Dec ; 24 (12) : 6376-6391. [epub] 20220720

Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks

. 2022 May ; 16 (5) : 1420-1429. [epub] 20220118

Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist

. 2022 Mar ; 16 (3) : 676-685. [epub] 20210920

The Waiting Room Hypothesis revisited by orchids: were orchid mycorrhizal fungi recruited among root endophytes?

. 2022 Feb 11 ; 129 (3) : 259-270.

Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots

. 2021 ; 12 () : 541583. [epub] 20210128

Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition

. 2021 Jan 12 ; 6 (1) : . [epub] 20210112

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...