Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
PubMed
33046698
PubMed Central
PMC7550596
DOI
10.1038/s41467-020-18795-w
PII: 10.1038/s41467-020-18795-w
Knihovny.cz E-zdroje
- MeSH
- ekosystém MeSH
- fungální proteiny genetika MeSH
- fylogeneze MeSH
- fyziologie rostlin MeSH
- genom fungální * MeSH
- houby klasifikace genetika fyziologie MeSH
- molekulární evoluce MeSH
- mykorhiza klasifikace genetika fyziologie MeSH
- rostliny mikrobiologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Názvy látek
- fungální proteiny MeSH
Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
Department Botany and Plant Pathology Oregon State University Corvallis OR USA
Department of Biological Sciences King Abdulaziz University Jeddah Saudi Arabia
Department of Biology Duke University Durham NC 27708 USA
Department of Biology McMaster University 1280 Main St West Hamilton ON L8S 4K1 Canada
Department of Forest Sciences University of Helsinki Helsinki Finland
Department of Plant and Microbial Biology University of California Berkeley Berkeley CA USA
INRAE USC1408 Architecture et Fonction des Macromolécules Biologiques 13009 Marseille France
Laboratoire de Recherche en Sciences Végétales Université de Toulouse CNRS UPS Toulouse France
Natural History Museum University of Tartu 14a Ravila 50411 Tartu Estonia
Plant Soil and Microbial Sciences Michigan State University East Lansing MI 48824 USA
Synthetic and Systems Biology Unit Biological Research Centre 6726 Szeged Hungary
US Department of Energy Joint Genome Institute Lawrence Berkeley National Laboratory Berkeley CA USA
Westerdijk Fungal Biodiversity Institute Uppsalalaan 8 3584 CT Utrecht Netherlands
Zobrazit více v PubMed
Van der, Heijden MGA, Martin FM, Selosse M-A, Sanders IR. Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 2015;205:1406–1423. doi: 10.1111/nph.13288. PubMed DOI
Genre A, Lanfranco L, Perotto S, Bonfante P. Unique and common traits in mycorrhizal symbioses. Nat. Rev. Microbiol. 2020 doi: 10.1038/s41579-020-0402-3. PubMed DOI
Martin F, Kohler A, Murat C, Veneault-Fourrey C, Hibbett DS. Unearthing the roots of ectomycorrhizal symbioses. Nat. Rev. Microbiol. 2016;14:760–773. doi: 10.1038/nrmicro.2016.149. PubMed DOI
Strullu‐Derrien C, Selosse M-A, Kenrick P, Martin FM. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytol. 2018;220:1012–1030. doi: 10.1111/nph.15076. PubMed DOI
Brundrett MC, Tedersoo L. Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 2018;220:1108–1115. doi: 10.1111/nph.14976. PubMed DOI
Matheny PB, et al. Out of the Palaeotropics? Historical biogeography and diversification of the cosmopolitan ectomycorrhizal mushroom family Inocybaceae. J. Biogeography. 2009;36:577–592. doi: 10.1111/j.1365-2699.2008.02055.x. DOI
Tedersoo L, Smith ME. Ectomycorrhizal fungal lineages: detection of four new groups and notes on consistent recognition of ectomycorrhizal taxa in high-throughput sequencing studies. Ecol. Stud. 2017;230:125–142. doi: 10.1007/978-3-319-56363-3_6. DOI
Lutzoni F, et al. Contemporaneous radiations of fungi and plants linked to symbiosis. Nat. Commun. 2018;9:5451. doi: 10.1038/s41467-018-07849-9. PubMed DOI PMC
Chang Y, et al. Phylogenomics of Endogonaceae and evolution of mycorrhizas within Mucoromycota. New Phytol. 2019;222:511–525. doi: 10.1111/nph.15613. PubMed DOI
Martin F, et al. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature. 2008;452:88–92. doi: 10.1038/nature06556. PubMed DOI
Martin F, et al. Périgord black truffle genome uncovers evolutionary origins and mechanisms of symbiosis. Nature. 2010;464:1033–1038. doi: 10.1038/nature08867. PubMed DOI
Kohler A, et al. Convergent losses of decay mechanisms and rapid turnover of symbiosis genes in mycorrhizal mutualists. Nat. Genet. 2015;47:410–415. doi: 10.1038/ng.3223. PubMed DOI
Peter M, et al. Ectomycorrhizal ecology is imprinted in the genome of the dominant symbiotic fungus Cenococcum geophilum. Nat. Commun. 2016;7:12662. doi: 10.1038/ncomms12662. PubMed DOI PMC
Hess JI, et al. Rapid divergence of genome architectures following the origin of an ectomycorrhizal symbiosis in the genus Amanita. Mol. Biol. Evol. 2018;35:2786–2804. PubMed PMC
Martino E, et al. Comparative genomics and transcriptomics depict ericoid mycorrhizal fungi as versatile saprotrophs and plant mutualists. New Phytol. 2018;217:1213–1229. doi: 10.1111/nph.14974. PubMed DOI
Murat C, et al. Pezizomycetes genomes reveal the molecular basis of ectomycorrhizal truffle lifestyle. Nat. Ecol. Evol. 2018;2:1956–1965. doi: 10.1038/s41559-018-0710-4. PubMed DOI
Pellitier PT, Zak DR. Ectomycorrhizal fungi and the enzymatic liberation of nitrogen from soil organic matter: why evolutionary history matters. New Phytol. 2018;217:68–73. doi: 10.1111/nph.14598. PubMed DOI
Frey SD. Mycorrhizal fungi as mediators of soil organic matter dynamics. Annu. Rev. Ecol. Evol. Syst. 2019;50:237–259. doi: 10.1146/annurev-ecolsys-110617-062331. DOI
Clemmensen KE, et al. Roots and associated fungi drive long-term carbon sequestration in boreal forest. Science. 2013;339:1615–1618. doi: 10.1126/science.1231923. PubMed DOI
Lindahl BD, et al. Spatial separation of litter decomposition and mycorrhizal nitrogen uptake in a boreal forest. New Phytol. 2007;173:611–620. doi: 10.1111/j.1469-8137.2006.01936.x. PubMed DOI
Akroume E, et al. First evidences that the ectomycorrhizal fungus Paxillus involutus mobilizes nitrogen and carbon from saprotrophic fungus necromass. Environ. Microbiol. 2019;21:197–208. doi: 10.1111/1462-2920.14440. PubMed DOI
Maillard F, Schilling J, Andrews E, Schreiner KM, Kennedy P. Functional convergence in the decomposition of fungal necromass in soil and wood. FEMS Microbiol. Ecol. 2020;96:fiz209. doi: 10.1093/femsec/fiz209. PubMed DOI
Koide RT, Sharda JN, Herr JR, Malcolm GM. Ectomycorrhizal fungi and the biotrophy–saprotrophy continuum. New Phytol. 2008;178:230–233. doi: 10.1111/j.1469-8137.2008.02401.x. PubMed DOI
Sipos G, et al. Genome expansion and lineage-specific genetic innovations in the forest pathogenic fungi Armillaria. Nat. Ecol. Evol. 2017;1:1931–1941. doi: 10.1038/s41559-017-0347-8. PubMed DOI
Tedersoo L, Bahram M. Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. 2019;94:1857–1880. doi: 10.1111/brv.12538. PubMed DOI
Floudas D, et al. The Paleozoic origin of enzymatic lignin decomposition reconstructed from 31 fungal genomes. Science. 2012;336:1715–1719. doi: 10.1126/science.1221748. PubMed DOI
Morin E, et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. New Phytol. 2019;222:1584–1598. doi: 10.1111/nph.15687. PubMed DOI
Varga T, et al. Megaphylogeny resolves global patterns of mushroom evolution. Nat. Ecol. Evol. 2019;3:668–678. doi: 10.1038/s41559-019-0834-1. PubMed DOI PMC
Zak DR, et al. Exploring the role of ectomycorrhizal fungi in soil carbon dynamics. New Phytol. 2019;223:33–39. doi: 10.1111/nph.15679. PubMed DOI
Nagy NG, et al. Comparative genomics of early-diverging mushroom-forming fungi provides insights into the origins of lignocellulose decay capabilities. Mol. Biol. Evol. 2016;33:959–970. doi: 10.1093/molbev/msv337. PubMed DOI
Churchland C, Grayston SJ. Specificity of plant-microbe interactions in the tree mycorrhizosphere biome and consequences for soil C cycling. Front. Microbiol. 2014;5:261. doi: 10.3389/fmicb.2014.00261. PubMed DOI PMC
Shah F, et al. Ectomycorrhizal fungi decompose soil organic matter using oxidative mechanisms adapted from saprotrophic ancestors. New Phytol. 2016;209:1705–1719. doi: 10.1111/nph.13722. PubMed DOI PMC
Krizsán K, et al. Transcriptomic atlas of mushroom development reveals conserved genes behind complex multicellularity in fungi. Proc. Natl Acad. Sci. USA. 2019;116:7409–7418. doi: 10.1073/pnas.1817822116. PubMed DOI PMC
Tedersoo L, May TW, Smith ME. Ectomycorrhizal lifestyle in fungi: global diversity, distribution, and evolution of phylogenetic lineages. Mycorrhiza. 2010;20:217–263. doi: 10.1007/s00572-009-0274-x. PubMed DOI
Tedersoo L, Brundrett M. Evolution of ectomycorrhizal symbiosis in plants. Ecol. Stud. 2017;230:407–467. doi: 10.1007/978-3-319-56363-3_19. DOI
Bödeker ITM, et al. Ectomycorrhizal Cortinarius species participate in enzymatic oxidation of humus in northern forest ecosystems. New Phytol. 2014;203:245–256. doi: 10.1111/nph.12791. PubMed DOI
Kusuda M, Ueda M, Miyatake K, Terashita T. Characterization of the carbohydrase productions of an ectomycorrhizal fungus, Tricholoma matsutake. Mycoscience. 2008;49:291–297. doi: 10.1007/S10267-008-0423-7. DOI
Rineau F, et al. Carbon availability triggers the decomposition of plant litter and assimilation of nitrogen by an ectomycorrhizal fungus. ISME J. 2013;7:2010–2022. doi: 10.1038/ismej.2013.91. PubMed DOI PMC
Lindahl BD, Tunlid A. Ectomycorrhizal fungi—potential organic matter decomposers, yet not saprotrophs. New Phytol. 2015;205:1443–1447. doi: 10.1111/nph.13201. PubMed DOI
Op De Beeck M, Troein C, Peterson C, Persson P, Tunlid A. Fenton reaction facilitates organic nitrogen acquisition by an ectomycorrhizal fungus. New Phytol. 2018;218:335–343. doi: 10.1111/nph.14971. PubMed DOI PMC
Nicolás C, et al. The soil organic matter decomposition mechanisms in ectomycorrhizal fungi are tuned for liberating soil organic nitrogen. ISME J. 2019;13:977–988. doi: 10.1038/s41396-018-0331-6. PubMed DOI PMC
Zhang F, et al. The ectomycorrhizal basidiomycete Laccaria bicolor releases a secreted β‐1,4 endoglucanase that plays a key role in symbiosis development. New Phytol. 2018;220:1309–1321. doi: 10.1111/nph.15113. PubMed DOI
Plett JM, et al. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. Proc. Natl Acad. Sci. USA. 2014;111:8299–8304. doi: 10.1073/pnas.1322671111. PubMed DOI PMC
Kang H, et al. The small secreted effector protein MiSSP7.6 of Laccaria bicolor is required for the establishment of ectomycorrhizal symbiosis. Environ. Microbiol. 2020;22:1435–1446. doi: 10.1111/1462-2920.14959. PubMed DOI
Plett, J. M. et al. Mycorrhizal effector PaMiSSP10b alters polyamine biosynthesis in Eucalyptus root cells and promotes root colonization. New Phytol. (2020, in the press). PubMed
Almási, et al. Comparative genomics reveals unique wood‐decay strategies and fruiting body development in the Schizophyllaceae. New Phytol. 2019;224:902–915. doi: 10.1111/nph.16032. PubMed DOI
Schurko AM, Neiman M, Logsdon JM. Signs of sex: what we know and how we know it. Trends Ecol. Evol. 2009;24:208–217. doi: 10.1016/j.tree.2008.11.010. PubMed DOI
Frantzeskakis L, et al. Signatures of host specialization and a recent transposable element burst in the dynamic one-speed genome of the fungal barley powdery mildew pathogen. BMC Genomics. 2018;19:27. doi: 10.1186/s12864-018-4750-6. PubMed DOI PMC
Pellegrin, C., Morin, E., Martin, F. M. & Veneault-Fourrey, C. Comparative analysis of secretomes from ectomycorrhizal fungi with an emphasis on small-secreted proteins. Front. Microbiol. 6, 1278 (2015). PubMed PMC
Pellegrin C, et al. Laccaria bicolor MiSSP8 is a small‐secreted protein decisive for the establishment of the ectomycorrhizal symbiosis. Environ. Microbiol. 2019;21:3765–3779. doi: 10.1111/1462-2920.14727. PubMed DOI
Liao HL, Chen Y, Vilgalys R. Metatranscriptomic study of common and host-specific patterns of gene expression between pines and their symbiotic ectomycorrhizal fungi in the genus Suillus. PLOS Genet. 2018;14:e1007742. doi: 10.1371/journal.pgen.1007742. PubMed DOI PMC
Soltis DE, et al. Chloroplast gene sequence data suggest a single origin of the predisposition for symbiotic nitrogen fixation in angiosperms. Proc. Natl Acad. Sci. USA. 1995;92:2647–2651. doi: 10.1073/pnas.92.7.2647. PubMed DOI PMC
Werner GDA, Cornwell WK, Sprent JI, Kattge J, Kiers ET. A single evolutionary innovation drives the deep evolution of symbiotic N2-fixation in angiosperms. Nat. Commun. 2014;5:4087. doi: 10.1038/ncomms5087. PubMed DOI PMC
Nagy LG, et al. Latent homology and convergent regulatory evolution underlies the repeated emergence of yeasts. Nat. Commun. 2014;5:4471. doi: 10.1038/ncomms5471. PubMed DOI
Nagy LG, Kovács GM, Krizsán K. Complex multicellularity in fungi: evolutionary convergence, single origin, or both? Biol. Rev. 2018;93:1778–1794. doi: 10.1111/brv.12418. PubMed DOI
Tedersoo L, et al. Global diversity and geography of soil fungi. Science. 2014;346:1256688. doi: 10.1126/science.1256688. PubMed DOI
Nguyen NH, et al. FUNGuild: an open annotation tool for parsing fungal community datasets by ecological guild. Fungal Ecol. 2016;20:241–248. doi: 10.1016/j.funeco.2015.06.006. DOI
Gnerre S, et al. High-quality draft assemblies of mammalian genomes from massively parallel sequence data. Proc. Natl Acad. Sci. USA. 2011;108:1513–1518. doi: 10.1073/pnas.1017351108. PubMed DOI PMC
English AC, et al. Mind the gap: upgrading genomes with Pacific Biosciences RS long-read sequencing technology. PLoS ONE. 2012;7:e47768. doi: 10.1371/journal.pone.0047768. PubMed DOI PMC
Chin C-S, et al. Phased diploid genome assembly with single-molecule real-time sequencing. Nat. Methods. 2016;13:1050–1054. doi: 10.1038/nmeth.4035. PubMed DOI PMC
Koren S, et al. Hybrid error correction and de novo assembly of single-molecule sequencing reads. Nat. Biotechnol. 2012;30:693–700. doi: 10.1038/nbt.2280. PubMed DOI PMC
Grabherr MG, et al. Full-length transcriptome assembly from RNA-Seq data without a reference genome. Nat. Biotechnol. 2011;29:644–652. doi: 10.1038/nbt.1883. PubMed DOI PMC
Grigoriev IV, et al. MycoCosm portal: gearing up for 1000 fungal genomes. Nucleic Acids Res. 2014;42:D699–D704. doi: 10.1093/nar/gkt1183. PubMed DOI PMC
Kuo, A., Bushnell, B. & Grigoriev, I. V. in Ecological Genomics of Fungi (ed Martin, F.), Advances In Botanical Research, 1–52 (Elsevier Academic Press, Cambridge, United Kingdom, 2014).
Darling, A. E. et al. The design, implementation, and evaluation of mpiBLAST. ClusterWorld Conference and Expo and the 4thInternational Conference on Linux Clusters (The HPC Revolution, CA, USA, 2003).
Miele V, et al. High-quality sequence clustering guided by network topology and multiple alignment likelihood. Bioinformatics. 2012;28:1078–1085. doi: 10.1093/bioinformatics/bts098. PubMed DOI
Löytynoja A, Goldman N. Phylogeny-aware Gap placement prevents errors in sequence alignment and evolutionary analysis. Science. 2008;320:1632–1635. doi: 10.1126/science.1158395. PubMed DOI
Capella-Gutierrez S, Silla-Martinez JM, Gabaldon T. trimAl: a tool for automated alignment trimming in large-scale phylogenetic analyses. Bioinformatics. 2009;25:1972–1973. doi: 10.1093/bioinformatics/btp348. PubMed DOI PMC
Price MN, Dehal PS, Arkin AP. FastTree: Computing large minimum evolution trees with profiles instead of a distance matrix. Mol. Biol. Evol. 2009;26:1641–1650. doi: 10.1093/molbev/msp077. PubMed DOI PMC
Löytynoja, A. In Methods in molecular biology, Vol. 1079, 155–170 (Human Press, Clifton, N.J., 2014). PubMed
Stamatakis A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics. 2014;30:1312–1313. doi: 10.1093/bioinformatics/btu033. PubMed DOI PMC
Wattam AR, et al. PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res. 2014;42:D581–D591. doi: 10.1093/nar/gkt1099. PubMed DOI PMC
Katoh K, Standley DM. MAFFT: multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 2013;30:772–780. doi: 10.1093/molbev/mst010. PubMed DOI PMC
Cruickshank R. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. Mol. Biol. Evol. 2000;17:540–552. doi: 10.1093/oxfordjournals.molbev.a026334. PubMed DOI
Stamatakis A. RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics. 2006;22:2688e2690. doi: 10.1093/bioinformatics/btl446. PubMed DOI
Sanderson MJ. r8s: inferring absolute rates of molecular evolution and divergence times in the absence of a molecular clock. Bioinformatics. 2003;19:301–302. doi: 10.1093/bioinformatics/19.2.301. PubMed DOI
Hibbett DS, Grimaldi D, Donoghue MJ. Fossil mushrooms from Miocene and Cretaceous ambers and the evolution of Homobasidiomycetes. Am. J. Bot. 1997;84:981–991. doi: 10.2307/2446289. PubMed DOI
Lepage BA, Currah RS, Stockey RA, Rothwell GW. Fossil ectomycorrhizae from the Middle Eocene. Am. J. Bot. 1997;84:410–412. doi: 10.2307/2446014. PubMed DOI
Taylor TN, Hass H, Kerp H, Krings M, Hanlin RT. Perithecial ascomycetes from the 400 million year old Rhynie chert: an example of ancestral polymorphism. Mycologia. 2005;97:269–285. doi: 10.1080/15572536.2006.11832862. PubMed DOI
Altschul SF, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25:3389–3402. doi: 10.1093/nar/25.17.3389. PubMed DOI PMC
Lombard V, Golaconda Ramulu H, Drula E, Coutinho PM, Henrissat B. The carbohydrate-active enzymes database (CAZy) in 2013. Nucleic Acids Res. 2014;42:D490–D495. doi: 10.1093/nar/gkt1178. PubMed DOI PMC
Wu Y-C, Rasmussen MD, Bansal MS, Kellis M. TreeFix: statistically informed gene tree error correction using species trees. Syst. Biol. 2013;62:110–120. doi: 10.1093/sysbio/sys076. PubMed DOI PMC
Mathé C, Fawal N, Roux C, Dunand C. In silico definition of new ligninolytic peroxidase sub-classes in fungi and putative relation to fungal life style. Sci. Rep. 2019;9:20373. doi: 10.1038/s41598-019-56774-4. PubMed DOI PMC
Domazet-Lošo T, Brajković J, Tautz D. A phylostratigraphy approach to uncover the genomic history of major adaptations in metazoan lineages. Trends Genet. 2007;23:533–539. doi: 10.1016/j.tig.2007.08.014. PubMed DOI
Sima FA, Waterhouse RM, Ioannidis P, Kriventseva EV, Zdobnov EM. Genome analysis BUSCO: assessing genome assembly and annotation completeness with single-copy orthologs. Bioinformatics. 2015;31:3210–3212. doi: 10.1093/bioinformatics/btv351. PubMed DOI
Konietschke, F. Simultane Konfidenzintervalle fuer nichtparametrische relative Kontrasteffekte. PhD thesis, University of Goettingen (2009).
Pinheiro, J., Bates, D., DebRoy, S., Sarkar, D. & R Core Team. nlme: Linear and Nonlinear Mixed Effects Models. R package version 3.1–137https://CRAN.R-project.org/package=nlme (2018).
Auguie, B. egg:https://cran.r-project.org/web/packages/egg/index.html (2017).
Yu G, Smith DK, Zhu H, Guan Y, Lam TT-Y. ggtree: an R package for visualization and annotation of phylogenetic trees with their covariates and other associated data. Methods Ecol. Evol. 2017;8:28–36. doi: 10.1111/2041-210X.12628. DOI
Wickham H. ggplot2: Elegant Graphics for Data Analysis. New York: Springer; 2009.
Kassambara, A. ggpubr R package: ggplot2-based publication ready plots. R package version 0.2.5.999https://rpkgs.datanovia.com/ggpubr/ (2020).
Paradis E, Schliep K. ape 5.0: an environment for modern phylogenetics and evolutionary analyses in R. Bioinformatics. 2018;35:526–528. doi: 10.1093/bioinformatics/bty633. PubMed DOI
Mensy, F. Detecting the effect of biological categories on genome composition. https://github.com/fantin-mesny/Effect-Of-Biological-Categories-On-Genomes-Composition (2020).
Oksanen, J. et al. Vegan: community ecology package. R package version 2.5–6https://CRAN.R-project.org/package=vegan (2019).
Hervé, M. RVAideMemoire: testing and plotting procedures for biostatistics. R package version 0.9-75https://CRAN.R-project.org/package=RVAideMemoire (2020).
Castanera R, et al. Transposable elements versus the fungal genome: Impact on whole-genome architecture and transcriptional profiles. PLoS Genet. 2016;12:e1006108. doi: 10.1371/journal.pgen.1006108. PubMed DOI PMC
Ploner, A. Heatplus: Heatmaps with row and/or column covariates and colored clusters. R package version 2.34.0, https://github.com/alexploner/Heatplus (2020).
The genus Fomitopsis (Polyporales, Basidiomycota) reconsidered
Forest microbiome and global change
Ectomycorrhizal fungi mediate belowground carbon transfer between pines and oaks
Forest Microhabitat Affects Succession of Fungal Communities on Decomposing Fine Tree Roots
Complementary Roles of Wood-Inhabiting Fungi and Bacteria Facilitate Deadwood Decomposition