Mycorrhizal fungi are mutualists that play crucial roles in nutrient acquisition in terrestrial ecosystems. Mycorrhizal symbioses arose repeatedly across multiple lineages of Mucoromycotina, Ascomycota, and Basidiomycota. Considerable variation exists in the capacity of mycorrhizal fungi to acquire carbon from soil organic matter. Here, we present a combined analysis of 135 fungal genomes from 73 saprotrophic, endophytic and pathogenic species, and 62 mycorrhizal species, including 29 new mycorrhizal genomes. This study samples ecologically dominant fungal guilds for which there were previously no symbiotic genomes available, including ectomycorrhizal Russulales, Thelephorales and Cantharellales. Our analyses show that transitions from saprotrophy to symbiosis involve (1) widespread losses of degrading enzymes acting on lignin and cellulose, (2) co-option of genes present in saprotrophic ancestors to fulfill new symbiotic functions, (3) diversification of novel, lineage-specific symbiosis-induced genes, (4) proliferation of transposable elements and (5) divergent genetic innovations underlying the convergent origins of the ectomycorrhizal guild.
- MeSH
- ekosystém MeSH
- fungální proteiny genetika MeSH
- fylogeneze MeSH
- fyziologie rostlin MeSH
- genom fungální * MeSH
- houby klasifikace genetika fyziologie MeSH
- molekulární evoluce MeSH
- mykorhiza klasifikace genetika fyziologie MeSH
- rostliny mikrobiologie MeSH
- symbióza * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Alien plants represent a potential threat to environment and society. Understanding the process of alien plants naturalization is therefore of primary importance. In alien plants, successful establishment can be constrained by the absence of suitable fungal partners. Here, we used 42 independent datasets of ectomycorrhizal fungal (EcMF) communities associated with alien Pinaceae and Eucalyptus spp., as the most commonly introduced tree species worldwide, to explore the strategies these plant groups utilize to establish symbioses with EcMF in the areas of introduction. We have also determined the differences in composition of EcMF communities associated with alien ectomycorrhizal plants in different regions. While alien Pinaceae introduced to new regions rely upon association with co-introduced EcMF, alien Eucalyptus often form novel interactions with EcMF species native to the region where the plant was introduced. The region of origin primarily determines species composition of EcMF communities associated with alien Pinaceae in new areas, which may largely affect invasion potential of the alien plants. Our study shows that alien ectomycorrhizal plants largely differ in their ability to interact with co-introduced and native ectomycorrhizal fungi in sites of introduction, which may potentially affect their invasive potential.
- MeSH
- mykorhiza * MeSH
- rostliny MeSH
- stromy MeSH
- symbióza MeSH
- zavlečené druhy MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analytical methods can offer insights into the structure of biological networks, but mechanisms that determine the structure of these networks remain unclear. We conducted a synthesis based on 111 previously published datasets to assess a range of ecological and evolutionary mechanisms that may influence the plant-associated fungal interaction networks. We calculated the relative host effect on fungal community composition and compared nestedness and modularity among different mycorrhizal types and endophytic fungal guilds. We also assessed how plant-fungal network structure was related to host phylogeny, environmental and sampling properties. Orchid mycorrhizal fungal communities responded most strongly to host identity, but the effect of host was similar among all other fungal guilds. Community nestedness, which did not differ among fungal guilds, declined significantly with increasing mean annual precipitation on a global scale. Orchid and ericoid mycorrhizal fungal communities were more modular than ectomycorrhizal and root endophytic communities, with arbuscular mycorrhizal fungi in an intermediate position. Network properties among a broad suite of plant-associated fungi were largely comparable and generally unrelated to phylogenetic distance among hosts. Instead, network metrics were predominantly affected by sampling and matrix properties, indicating the importance of study design in properly inferring ecological patterns.