Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist

. 2022 Mar ; 16 (3) : 676-685. [epub] 20210920

Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid34545172
Odkazy

PubMed 34545172
PubMed Central PMC8857242
DOI 10.1038/s41396-021-01112-8
PII: 10.1038/s41396-021-01112-8
Knihovny.cz E-zdroje

Arbuscular mycorrhizal (AM) fungi lack efficient exoenzymes to access organic nutrients directly. Nevertheless, the fungi often obtain and further channel to their host plants a significant share of nitrogen (N) and/or phosphorus from such resources, presumably via cooperation with other soil microorganisms. Because it is challenging to disentangle individual microbial players and processes in complex soil, we took a synthetic approach here to study 15N-labelled chitin (an organic N source) recycling via microbial loop in AM fungal hyphosphere. To this end, we employed a compartmented in vitro cultivation system and monoxenic culture of Rhizophagus irregularis associated with Cichorium intybus roots, various soil bacteria, and the protist Polysphondylium pallidum. We showed that upon presence of Paenibacillus sp. in its hyphosphere, the AM fungus (and associated plant roots) obtained several-fold larger quantities of N from the chitin than it did with any other bacteria, whether chitinolytic or not. Moreover, we demonstrated that adding P. pallidum to the hyphosphere with Paenibacillus sp. further increased by at least 65% the gain of N from the chitin by the AM fungus compared to the hyphosphere without protists. We thus directly demonstrate microbial interplay possibly involved in efficient organic N utilisation by AM fungal hyphae.

Zobrazit více v PubMed

Redecker D, Kodner R, Graham LE. Glomalean fungi from the Ordovician. Science. 2000;289:1920–1. PubMed

Parniske M. Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nat Rev Microbiol. 2008;6:763–75. PubMed

Raven JA, Lambers H, Smith SE, Westoby M. Costs of acquiring phosphorus by vascular land plants: patterns and implications for plant coexistence. N Phytol. 2018;217:1420–7. PubMed

Field KJ, Pressel S. Unity in diversity: structural and functional insights into the ancient partnerships between plants and fungi. N Phytol. 2018;220:996–1011. PubMed

Harrison MJ, Vanbuuren ML. A phosphate transporter from the mycorrhizal fungus Glomus versiforme. Nature. 1995;378:626–9. PubMed

Smith SE, Jakobsen I, Gronlund M, Smith FA. Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 2011;156:1050–7. PubMed PMC

Zhang L, Feng G, Declerck S. Signal beyond nutrient, fructose, exuded by an arbuscular mycorrhizal fungus triggers phytate mineralization by a phosphate solubilizing bacterium. ISME J. 2018;12:23–51. PubMed PMC

Zhang L, Xu MG, Liu Y, Zhang FS, Hodge A, Feng G. Carbon and phosphorus exchange may enable cooperation between an arbuscular mycorrhizal fungus and a phosphate-solubilizing bacterium. N Phytol. 2016;210:1022–32. PubMed

Koide RT, Kabir Z. Extraradical hyphae of the mycorrhizal fungus Glomus intraradices can hydrolyse organic phosphate. N Phytol. 2000;148:511–7. PubMed

Jiang FY, Zhang L, Zhou JC, George TS, Feng G. Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. N Phytol. 2021;230:304–15. PubMed

Tisserant E, Malbreil M, Kuo A, Kohler A, Symeonidi A, Balestrini R, et al. Genome of an arbuscular mycorrhizal fungus provides insight into the oldest plant symbiosis. Proc Natl Acad Sci USA. 2013;110:20117–22. PubMed PMC

Miyauchi S, Kiss E, Kuo A, Drula E, Kohler A, Sanchez-Garcia M, et al. Large-scale genome sequencing of mycorrhizal fungi provides insights into the early evolution of symbiotic traits. Nat Commun. 2020;11:5125. PubMed PMC

Johansen A, Jakobsen I, Jensen ES. Hyphal transport by a vesicular-arbuscular mycorrhizal fungus of N applied to the soil as ammonium or nitrate. Biol Fert Soils. 1993;16:66–70.

Wipf D, Krajinski F, van Tuinen D, Recorbet G, Courty PE. Trading on the arbuscular mycorrhiza market: from arbuscules to common mycorrhizal networks. N Phytol. 2019;223:1127–42. PubMed

Johansen A, Jensen ES. Transfer of N and P from intact or decomposing roots of pea to barley interconnected by an arbuscular mycorrhizal fungus. Soil Biol Biochem. 1996;28:73–81.

Hodge A, Campbell CD, Fitter AH. An arbuscular mycorrhizal fungus accelerates decomposition and acquires nitrogen directly from organic material. Nature. 2001;413:297–9. PubMed

Hodge A, Stewart J, Robinson D, Griffiths BS, Fitter AH. Competition between roots and soil micro-organisms for nutrients from nitrogen-rich patches of varying complexity. J Ecol. 2000;88:150–64.

Bukovská P, Bonkowski M, Konvalinková T, Beskid O, Hujslová M, Püschel D, et al. Utilization of organic nitrogen by arbuscular mycorrhizal fungi–is there a specific role for protists and ammonia oxidizers? Mycorrhiza. 2018;28:465. PubMed

Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol. 2016;6:4332–46. PubMed PMC

Bukovská P, Rozmoš M, Kotianová M, Gančarčíková K, Dudáš M, Hršelová H, et al. Arbuscular mycorrhiza mediates efficient recycling from soil to plants of nitrogen bound in chitin. Front Microbiol. 2021;12:574060. PubMed PMC

Bunn RA, Simpson DT, Bullington LS, Lekberg Y, Janos DP. Revisiting the ‘direct mineral cycling’ hypothesis: arbuscular mycorrhizal fungi colonize leaf litter, but why? ISME J. 2019;13:1891–8. PubMed PMC

Nuccio EE, Hodge A, Pett-Ridge J, Herman DJ, Weber PK, Firestone MK. An arbuscular mycorrhizal fungus significantly modifies the soil bacterial community and nitrogen cycling during litter decomposition. Environ Microbiol. 2013;15:1870–81. PubMed

Herman DJ, Firestone MK, Nuccio E, Hodge A. Interactions between an arbuscular mycorrhizal fungus and a soil microbial community mediating litter decomposition. FEMS Microbiol Ecol. 2012;80:236–47. PubMed

Emmett BD, Lévesque-Tremblay V, Harrison MJ. Conserved and reproducible bacterial communities associate with extraradical hyphae of arbuscular mycorrhizal fungi. ISME J. 2021;e-pub ahead of print 1 March 2021; 10.1038/s41396-021-00920-2. PubMed PMC

Trap J, Bonkowski M, Plassard C, Villenave C, Blanchart E. Ecological importance of soil bacterivores for ecosystem functions. Plant Soil. 2016;398:1–24.

Jansa J, Hodge A. Swimming, gliding, or hyphal riding? On microbial migration along the arbuscular mycorrhizal hyphal highway and functional consequences thereof. N Phytol. 2021;230:14–6. PubMed

Morin E, Miyauchi S, San Clemente H, Chen ECH, Pelin A, de la Providencia I, et al. Comparative genomics of Rhizophagus irregularis, R. cerebriforme, R. diaphanus and Gigaspora rosea highlights specific genetic features in Glomeromycotina. N Phytol. 2019;222:1584–98. PubMed

Gil-Cardeza ML, Calonne-Salmon M, Gomez E, Declerck S. Short-term chromium (VI) exposure increases phosphorus uptake by the extraradical mycelium of the arbuscular mycorrhizal fungus Rhizophagus irregularis MUCL 41833. Chemosphere. 2017;187:27–34. PubMed

Voets L, Dupre de Boulois H, Renard L, Strullu DG, Declerck S. Development of an autotrophic culture system for the in vitro mycorrhization of potato plantlets. FEMS Microbiol Lett. 2005;248:111–8. PubMed

Kiers ET, Duhamel M, Beesetty Y, Mensah JA, Franken O, Verbruggen E, et al. Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science. 2011;333:880–2. PubMed

van’t Padje A, Galvez LO, Klein M, Hink MA, Postma M, Shimizu T, et al. Temporal tracking of quantum-dot apatite across in vitro mycorrhizal networks shows how host demand can influence fungal nutrient transfer strategies. ISME J. 2021;15:435–49. PubMed PMC

Gryndler M, Šmilauer P, Püschel D, Bukovská P, Hršelová H, Hujslová M, et al. Appropriate nonmycorrhizal controls in arbuscular mycorrhiza research: a microbiome perspective. Mycorrhiza. 2018;28:435–50. PubMed

Jansa J, Šmilauer P, Borovička J, Hršelová H, Forczek ST, Slámová K, et al. Dead Rhizophagus irregularis biomass mysteriously stimulates plant growth. Mycorrhiza. 2020;30:63–77. PubMed

Bukovská P, Püschel D, Hršelová H, Jansa J, Gryndler M. Can inoculation with living soil standardize microbial communities in soilless potting substrates? Appl Soil Ecol. 2016;108:278–87.

Cranenbrouck S, Voets L, Bivort C, Renard L, Strullu DG, Declerck S. Methodologies for in vitro cultivation of arbuscular mycorrhizal fungi with root organs. In: Declerck S, Strullu DG, Fortin JA, editors. In vitro culture of mycorrhizas. Berlin: Springer; 2005.

Ohno T, Zibilske LM. Determination of low concentrations of phosphorus is soil extracts using malachite green. Soil Sci Soc Am J. 1991;55:892–5.

Püschel D, Janoušková M, Voříšková A, Gryndlerová H, Vosátka M, Jansa J. Arbuscular mycorrhiza stimulates biological nitrogen fixation in two Medicago spp. through improved phosphorus acquisition. Front Plant Sci. 2017;8:390. PubMed PMC

Phillips DL, Gregg JW. Uncertainty in source partitioning using stable isotopes. Oecologia. 2001;127:171–9. PubMed

Perez-Tienda J, Valderas A, Camanes G, Garcia-Agustin P, Ferrol N. Kinetics of NH4+ uptake by the arbuscular mycorrhizal fungus Rhizophagus irregularis. Mycorrhiza. 2012;22:485–91. PubMed

He XX, Chen YQ, Liu SJ, Gunina A, Wang XL, Chen W, et al. Cooperation of earthworm and arbuscular mycorrhizae enhanced plant N uptake by balancing absorption and supply of ammonia. Soil Biol Biochem. 2018;116:351–9.

Hestrin R, Weber PK, Pett-Ridge J, Lehmann J. Plants and mycorrhizal symbionts acquire substantial soil nitrogen from gaseous ammonia transport. New Phytol. 2021;e-pub ahead of print 2 June 2021; 10.1111/nph.17527 PubMed

Everett DH, Wynne-Jones WFK. The dissociation of the ammonium ion and the basic strength of ammonia in water. P R Soc Lond A Mat. 1938;169:190–204.

Bidondo LF, Colombo R, Bompadre J, Benavides M, Scorza V, Silvani V, et al. Cultivable bacteria associated with infective propagules of arbuscular mycorrhizal fungi. Implications for mycorrhizal activity. Appl Soil Ecol. 2016;105:86–90.

Cruz AF, Ishii T. Arbuscular mycorrhizal fungal spores host bacteria that affect nutrient biodynamics and biocontrol of soil-borne plant pathogens. Biol Open. 2012;1:52–7. PubMed PMC

Scheublin TR, Sanders IR, Keel C, van der Meer JR. Characterisation of microbial communities colonising the hyphal surfaces of arbuscular mycorrhizal fungi. ISME J. 2010;4:752–63. PubMed

Toljander JF, Artursson V, Paul LR, Jansson JK, Finlay RD. Attachment of different soil bacteria to arbuscular mycorrhizal fungal extraradical hyphae is determined by hyphal vitality and fungal species. FEMS Microbiol Lett. 2006;254:34–40. PubMed

Jaderlund L, Arthurson V, Granhall U, Jansson JK. Specific interactions between arbuscular mycorrhizal fungi and plant growth-promoting bacteria: as revealed by different combinations. FEMS Microbiol Lett. 2008;287:174–80. PubMed

Larsen J, Jaramillo-Lopez P, Najera-Rincon M, Gonzalez-Esquivel CE. Biotic interactions in the rhizosphere in relation to plant and soil nutrient dynamics. J Soil Sci Plant Nut. 2015;15:449–63.

Mansfeld-Giese K, Larsen J, Bodker L. Bacterial populations associated with mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. FEMS Microbiol Ecol. 2002;41:133–40. PubMed

Hildebrandt U, Janetta K, Bothe H. Towards growth of arbuscular mycorrhizal fungi independent of a plant host. Appl Environ Microbiol. 2002;68:1919–24. PubMed PMC

Cruz AF, Horii S, Ochiai S, Yasuda A, Ishii T. Isolation and analysis of bacteria associated with spores of Gigaspora margarita. J Appl Microbiol. 2008;104:1711–7. PubMed

Luthfiana N, Inamura N, Tantriani, Sato T, Saito K, Oikawa A, et al. Metabolite profiling of the hyphal exudates of Rhizophagus clarus and Rhizophagus irregularis under phosphorus deficiency. Mycorrhiza. 2021;31:403–12. PubMed

Oliverio AM, Geisen S, Delgado-Baquerizo M, Maestre FT, Turner BL, Fierer N. The global-scale distributions of soil protists and their contributions to belowground systems. Sci Adv. 2020;6:eaax8787. PubMed PMC

Averill C, Turner BL, Finzi AC. Mycorrhiza-mediated competition between plants and decomposers drives soil carbon storage. Nature. 2014;505:543–5. PubMed

Mäder P, Fliessbach A, Dubois D, Gunst L, Fried P, Niggli U. Soil fertility and biodiversity in organic farming. Science. 2002;296:1694–7. PubMed

Cavagnaro TR. Biologically regulated nutrient supply systems: compost and arbuscular mycorrhizas—a review. Adv Agron. 2015;129:293–321.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...