Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu úvodníky
PubMed
35444670
PubMed Central
PMC9014169
DOI
10.3389/fpls.2022.875958
Knihovny.cz E-zdroje
- Klíčová slova
- beneficial microbes, human needs, nutrient limitation, pathogens, plant stress, soil health, sustainability, sustainable agro-ecosystem,
- Publikační typ
- úvodníky MeSH
Czech Academy of Sciences Institute of Microbiology Prague Czechia
Department of Veterinary Science University of Pisa Pisa Italy
Editorial on the Research Topic Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans PubMed
Zobrazit více v PubMed
Benami M., Isack Y., Grotsky D., Levy D., Kofman Y. (2020). “The economic potential of arbuscular mycorrhizal fungi in agriculture,” in Grand Challenges in Fungal Biotechnology: Grand Challenges in Biology and Biotechnology, ed H. Nevalainen (Cham: Springer; ), 239–279. 10.1007/978-3-030-29541-7_9 DOI
Brito I., Carvalho M., Goss M. J. (2021). Managing the functional diversity of arbuscular mycorrhizal fungi for the sustainable intensification of crop production. Plants People Planet 3, 491–505. 10.1002/ppp3.10212 DOI
Brundrett M. C., Tedersoo L. (2018). Evolutionary history of mycorrhizal symbioses and global host plant diversity. New Phytol. 220, 1108–1115. 10.1111/nph.14976 PubMed DOI
Frey-Klett P., Garbaye J., Tarkka M. (2007). The mycorrhiza helper bacteria revisited. New Phytol. 176, 22–36. 10.1111/j.1469-8137.2007.02191.x PubMed DOI
Frossard E., Bünemann E., Jansa J., Oberson A., Feller C. (2009). Concepts and practices of nutrient management in agro-ecosystems: can we draw lessons from history to design future sustainable agricultural production systems? Bodenkultur 60, 43–60. Available online at: https://diebodenkultur.boku.ac.at/volltexte/band-60/heft-1/frossard.pdf
Gamper H., Peter M., Jansa J., Luscher A., Hartwig U. a., et al. . (2004). Arbuscular mycorrhizal fungi benefit from 7 years of free air CO2 enrichment in well-fertilized grass and legume monocultures. Glob. Chang. Biol. 10, 189–199. 10.1111/j.1529-8817.2003.00734.x DOI
Garg N., Chandel S. (2011). “Arbuscular mycorrhizal networks: process and functions,” in Sustainable Agriculture, Vol. 2, eds E. Lichtfouse, M. Hamelin, M. Navarrete, and P. Debaeke (Dordrecht: Springer Netherlands; ), 907–930. 10.1007/978-94-007-0394-0_40 DOI
Gianinazzi S., Gollotte A., Binet M.-N. N., van Tuinen D., Redecker D., Wipf D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. Mycorrhiza 20, 519–530. 10.1007/s00572-010-0333-3 PubMed DOI
Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. . (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13, 394–407. 10.1111/j.1461-0248.2009.01430.x PubMed DOI
Jansa J., Smith F., Smith S. E. (2008). Are there benefits of simultaneous root colonization by diferent arbuscular mycorrhizal fungi? New Phytol. 177, 779–789. 10.1111/j.1469-8137.2007.02294.x PubMed DOI
Jiang F., Zhang L., Zhou J., George T. S., Feng G. (2021). Arbuscular mycorrhizal fungi enhance mineralisation of organic phosphorus by carrying bacteria along their extraradical hyphae. New Phytol. 230, 304–315. 10.1111/nph.17081 PubMed DOI
Jiang S., An X., Shao Y., Kang Y., Chen T., Mei X., et al. . (2021). Responses of arbuscular mycorrhizal fungi occurrence to organic fertilizer: a meta-analysis of field studies. Plant Soil 469, 89–105. 10.1007/s11104-021-05153-y DOI
Johnson N. C. (2010). Resource stoichiometry elucidates the structure and function of arbuscular mycorrhizas across scales. New Phytol. 185, 631–647. 10.1111/j.1469-8137.2009.03110.x PubMed DOI
Kaschuk G., Kuyper T. W., Leffelaar P. A., Hungria M., Giller K. E. (2009). Are the rates of photosynthesis stimulated by the carbon sink strength of rhizobial and arbuscular mycorrhizal symbioses? Soil Biol. Biochem. 41, 1233–1244. 10.1016/j.soilbio.2009.03.005 DOI
Kaschuk G., Leffelaar P., Giller K. E., Alberton O., Hungria M., Kuyper T. W. (2010). Responses of legumes to rhizobia and arbuscular mycorrhizal fungi: a meta-analysis of potential photosynthate limitation of symbioses. Soil Biol. Biochem. 42, 125–127. 10.1016/j.soilbio.2009.10.017 DOI
Knegt B., Jansa J., Franken O., Engelmoer D. J. P., Werner G. D. A., Bücking H., et al. . (2016). Host plant quality mediates competition between arbuscular mycorrhizal fungi. Fungal Ecol. 20, 233–240. 10.1016/j.funeco.2014.09.011 DOI
Lazzara S., Militello M., Carrubba A., Napoli E., Saia S. (2017). Arbuscular mycorrhizal fungi altered the hypericin, pseudohypericin, and hyperforin content in flowers of Hypericum perforatum grown under contrasting P availability in a highly organic substrate. Mycorrhiza 27, 345–354. 10.1007/s00572-016-0756-6 PubMed DOI
Lekberg Y., Koide R. T. (2005). Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytol. 168, 189–204. 10.1111/j.1469-8137.2005.01490.x PubMed DOI
Lendenmann M., Thonar C., Barnard R. L., Salmon Y., Werner R. A., Frossard E., et al. . (2011). Symbiont identity matters: carbon and phosphorus fluxes between Medicago truncatula and different arbuscular mycorrhizal fungi. Mycorrhiza 21, 689–702. 10.1007/s00572-011-0371-5 PubMed DOI
Pellegrino E., Öpik M., Bonari E., Ercoli L. (2015). Responses of wheat to arbuscular mycorrhizal fungi: a meta-analysis of field studies from 1975 to 2013. Soil Biol. Biochem. 84, 210–217. 10.1016/j.soilbio.2015.02.020 DOI
Qiu Q., Bender S. F., Mgelwa A. S., Hu Y. (2022). Arbuscular mycorrhizal fungi mitigate soil nitrogen and phosphorus losses: a meta-analysis. Sci. Total Environ. 807:150857. 10.1016/j.scitotenv.2021.150857 PubMed DOI
Rezáčová V., Slavíková R., Zemková L., Konvalinková T., Procházková V., Štovíček V., et al. . (2018a). Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil 425, 441–456. 10.1007/s11104-018-3606-9 DOI
Rezáčová V., Zemková L., Beskid O., Püschel D., Konvalinkov,á T., Hujslová M., et al. . (2018b). Little cross-feeding of the mycorrhizal networks shared between C3-panicum bisulcatum and C4-panicum maximum under different temperature regimes. Front. Plant Sci. 9:449. 10.3389/fpls.2018.00449 PubMed DOI PMC
Rillig M. C., Aguilar-Trigueros C. A., Camenzind T., Cavagnaro T. R., Degrune F., Hohmann P., et al. . (2019). Why farmers should manage the arbuscular mycorrhizal symbiosis. New Phytol. 222, 1171–1175. 10.1111/nph.15602 PubMed DOI
Rozmoš M., Bukovská P., Hršelová H., Kotianová M., Dudáš M., Gančarčíková K., et al. . (2021). Organic nitrogen utilisation by an arbuscular mycorrhizal fungus is mediated by specific soil bacteria and a protist. ISME J. 16, 676–685. 10.1038/s41396-021-01112-8 PubMed DOI PMC
Ryan M. H., Graham J. H. (2018). Little evidence that farmers should consider abundance or diversity of arbuscular mycorrhizal fungi when managing crops. New Phytol. 220, 1092–1107. 10.1111/nph.15308 PubMed DOI
Ryan M. H., Graham J. H., Morton J. B., Kirkegaard J. A. (2019). Research must use a systems agronomy approach if management of the arbuscular mycorrhizal symbiosis is to contribute to sustainable intensification. New Phytol. 222, 1176–1178. 10.1111/nph.15600 PubMed DOI
Sadras V., Alston J., Aphalo P., Connor D., Denison R. F., Fischer T., et al. . (2020). “Making science more effective for agriculture,” in Advances in Agronomy, ed D. L. Sparks (Academic Press; ), 153–177. 10.1016/bs.agron.2020.05.003 DOI
Saia S., Corrado G., Vitaglione P., Colla G., Bonini P., Giordano M., et al. . (2021). An endophytic fungi-based biostimulant modulates volatile and non-volatile secondary metabolites and yield of greenhouse basil (Ocimum basilicum L.) through variable mechanisms dependent on salinity stress level. Pathogens 10:797. 10.3390/pathogens10070797 PubMed DOI PMC
Saia S., Fragasso M., De Vita P., Beleggia R. (2019). Metabolomics provides valuable insight for the study of durum wheat: a review. J. Agric. Food Chem. 67, 3069–3085. 10.1021/acs.jafc.8b07097 PubMed DOI
Salomon M. J., Demarmels R., Watts-Williams S. J., McLaughlin M. J., Kafle A., Ketelsen C., et al. . (2022). Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Appl. Soil Ecol. 169:104225. 10.1016/j.apsoil.2021.104225 DOI
Sánchez M. G., Saia S., Aranda E. (2021). “The contribution of fungi and their lifestyle in the nitrogen cycle,” in Nitrogen Cycle 1st Edn, eds J. Gonzalez-Lopez and A. Gonzalez-Martinez (Boca Raton, FL: : CRC PRESS; ), 82–101. 10.1201/9780429291180-5 DOI
Smith S. E., Facelli E., Pope S., Andrew Smith F. (2010). Plant performance in stressful environments: interpreting new and established knowledge of the roles of arbuscular mycorrhizas. Plant Soil 326, 3–20. 10.1007/s11104-009-9981-5 DOI
Thonar C., Frossard E., Šmilauer P., Jansa J. (2013). Competition and facilitation in synthetic communities of arbuscular mycorrhizal fungi. Mol. Ecol. 23, 733–746. 10.1111/mec.12625 PubMed DOI
Veiga R. S. L., Jansa J., Frossard E., Van Der Heijden M. G. A. (2011). Can arbuscular mycorrhizal fungi reduce the growth of agricultural weeds? PLoS ONE 6:e27825. 10.1371/journal.pone.0027825 PubMed DOI PMC
Verbruggen E., Jansa J., Hammer E. C., Rillig M. C. (2016). Do arbuscular mycorrhizal fungi stabilize litter-derived carbon in soil? J. Ecol. 104, 261–269. 10.1111/1365-2745.12496 DOI
Walder F., Niemann H., Natarajan M., Lehmann M. F., Boller T., Wiemken A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159, 789–797. 10.1104/pp.112.195727 PubMed DOI PMC
Weremijewicz J., Sternberg L., da S. L. O., Janos D. P. (2016). Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212, 461–471. 10.1111/nph.14041 PubMed DOI
Zeng Y., Guo L.-P., Chen B.-D., Hao Z.-P., Wang J.-Y., Huang L.-Q., et al. . (2013). Arbuscular mycorrhizal symbiosis and active ingredients of medicinal plants: current research status and prospectives. Mycorrhiza 23, 253–265. 10.1007/s00572-013-0484-0 PubMed DOI
Zhang S., Lehmann A., Zheng W., You Z., Rillig M. C. (2019). Arbuscular mycorrhizal fungi increase grain yields: a meta-analysis. New Phytol. 222, 543–555. 10.1111/nph.15570 PubMed DOI