Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
29681914
PubMed Central
PMC5897505
DOI
10.3389/fpls.2018.00449
Knihovny.cz E-resources
- Keywords
- C3 and C4 photosynthesis, Panicum sp., arbuscular mycorrhiza, common mycorrhizal networks (CMNs), community, natural 13C isotopic abundance, quantitative real-time PCR, temperature,
- Publication type
- Journal Article MeSH
Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.
See more in PubMed
Aroca R., Porcel R., Ruiz-Lozano J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in Phaseolus vulgaris under drought, cold or salinity stresses? New Phytol. 173 808–816. PubMed
Augé R. M., Toler H. D., Saxton A. M. (2014). Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. Front. Plant Sci. 5:562. 10.3389/fpls.2014.00562 PubMed DOI PMC
Augé R. M., Toler H. D., Saxton A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. Mycorrhiza 25 13–24. 10.1007/s00572-014-0585-4 PubMed DOI
Bever J. D., Dickie I. A., Facelli E., Facelli J. M., Klironomos J., Moora M., et al. (2010). Rooting theories of plant community ecology in microbial interactions. Trends Ecol. Evol. 25 468–478. 10.1016/j.tree.2010.05.004 PubMed DOI PMC
Bever J. D., Richardson S. C., Lawrence B. M., Holmes J., Watson M. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. Ecol. Lett. 12 13–21. 10.1111/j.1461-0248.2008.01254.x PubMed DOI
Bryla D. R., Eissenstat D. M. (2005). “Respiratory costs of mycorrhiza associations,” in Plant Respiration eds Lambers H., Ribas-Carbo M. (Dordrecht: Springer; ) 207–224.
Bücking H., Kafle A. (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. Agronomy 5 587–612. 10.3390/agronomy5040587 DOI
Bücking H., Mensah J. A., Fellbaum C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. Commun. Integr. Biol. 9:e1107684. 10.1080/19420889.2015.1107684 PubMed DOI PMC
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi - is there a specific role for protists and ammonia oxidizers? Mycorrhiza 28 269–283. 10.1007/s00572-018-0825-0 PubMed DOI
Bunn R., Lekberg Y., Zabinski C. (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. Ecology 90 1378–1388. 10.1890/07-2080.1 PubMed DOI
Chandrasekaran M., Kim K., Krishnamoorthy R., Walitang D., Sundaram S., Joe M. M., et al. (2016). Mycorrhizal symbiotic efficiency on C3 and C4 plants under salinity stress - a meta-analysis. Front. Microbiol. 7:1246. 10.3389/fmicb.2016.01246 PubMed DOI PMC
Compant S., van der Heijden M. G. A., Sessitsch A. (2010). Climate change effects on beneficial plant-microorganism interactions. FEMS Microbiol. Ecol. 73 197–214. 10.1111/j.1574-6941.2010.00900.x PubMed DOI
Compant S., van der Heijden M. G. A., Sessitsch A. (2013). “Soil warming effects on beneficial plant-microbe interactions,” in Molecular Microbial Ecology of the Rhizosphere ed. de Bruijn F. J. (Hoboken, NJ: John Wiley & Sons, Inc.) 1045–1054.
R Core Team (2013). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
Couillerot O., Ramirez-Trujillo A., Walker V., von Felten A., Jansa J., Maurhofer M., et al. (2013). Comparison of prominent Azospirillum strains in Azospirillum-Pseudomonas-Glomus consortia for promotion of maize growth. Appl. Microbiol. Biotechnol. 97 4639–4649. 10.1007/s00253-012-4249-z PubMed DOI
Courty P. E., Doubková P., Calabrese S., Niemann H., Lehmann M. F., Vosátka M., et al. (2015). Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts. Soil Biol. Biochem. 82 52–61. 10.1016/j.soilbio.2014.12.005 DOI
Davison J., Moora M., Öpik M., Adholeya A., Ainsaar L., Ba A., et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349 970–973. 10.1126/science.aab1161 PubMed DOI
Dessureault-Rompré J., Zebarth B. J., Georgallas A., Burton D. L., Grant C. A., Drurye C. F. (2010). Temperature dependence of soil nitrogen mineralization rate: comparison of mathematical models, reference temperatures and origin of the soils. Geoderma 157 97–108. 10.1016/j.geoderma.2010.04.001 DOI
Ehleringer J. R., Monson R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. Annu. Rev. Ecol. Syst. 24 411–439. 10.1146/annurev.es.24.110193.002211 DOI
Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. Proc. Natl. Acad. Sci. U.S.A. 109 2666–2671. 10.1073/pnas.1118650109 PubMed DOI PMC
Fellbaum C. R., Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytol. 203 646–656. 10.1111/Nph.12827 PubMed DOI
Fitter A. H., Heinemeyer A., Staddon P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. New Phytol. 147 179–187. 10.1046/j.1469-8137.2000.00680.x DOI
Frostegård A., Tunlid A., Bååth E. (1991). Microbial biomass measured as total lipid phosphate in soils of different organic content. J. Microbiol. Methods 14 151–163. 10.1016/0167-7012(91)90018-L DOI
Hawkes C. V., Hartley I. P., Ineson P., Fitter A. H. (2008). Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. Glob. Change Biol. 14 1181–1190. 10.1111/j.1365-2486.2007.01535.x DOI
Heinemeyer A., Ineson P., Ostle N., Fitter A. H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. New Phytol. 171 159–170. 10.1111/j.1469-8137.2006.01730.x PubMed DOI
Helgason T., Merryweather J. W., Denison J., Wilson P., Young J. P. W., Fitter A. H. (2002). Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. J. Ecol. 90 371–384. 10.1046/j.1365-2745.2001.00674.x DOI
Hetrick B. A. D., Wilson G. W. T., Todd T. C. (1990). Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil-microorganisms. Can. J. Bot. 68 461–467. 10.1139/b90-061 DOI
Hewitt E. J. (1966). Sand and Water Culture Methods Used in the Study of Plant Nutrition. Farnham Royal: Commonwealth Bureau of Horticulture and Plantation Crops.
Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc. Natl. Acad. Sci. U.S.A. 107 13754–13759. 10.1073/pnas.1005874107 PubMed DOI PMC
Hodge A., Storer K. (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. Plant Soil 386 1–19. 10.1007/s11104-014-2162-1 DOI
Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. 13 394–407. 10.1111/j.1461-0248.2009.01430.x PubMed DOI
Jakobsen I., Rosendahl L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. New Phytol. 115 77–83. 10.1111/j.1469-8137.1990.tb00924.x DOI
Jansa J., Erb A., Oberholzer H. R., Šmilauer P., Egli S. (2014). Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Mol. Ecol. 23 2118–2135. 10.1111/mec.12706 PubMed DOI
Jansa J., Mozafar A., Frossard E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. Plant Soil 276 163–176. 10.1007/s11104-005-4274-0 DOI
Jansa J., Smith F. A., Smith S. E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 177 779–789. PubMed
Johnson N. C., Wilson G. W. T., Wilson J. A., Miller R. M., Bowker M. A. (2015). Mycorrhizal phenotypes and the law of the minimum. New Phytol. 205 1473–1484. 10.1111/nph.13172 PubMed DOI
Kiers E. T., Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. Science 333 880–882. 10.1126/science.1208473 PubMed DOI
Konvalinková T., Püschel D., Řezáčová V., Gryndlerová H., Jansa J. (2017). Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. Plant Soil 419 319–333. 10.1007/s11104-017-3350-6 DOI
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA-mycorrhizas. Mycol. Res. 92 486–505. 10.1016/S0953-7562(89)80195-9 DOI
Krak K., Janoušková M., Caklová P., Vosátka M., Štorchová H. (2012). Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA. Appl. Environ. Microbiol. 78 3630–3637. 10.1128/AEM.00035-12 PubMed DOI PMC
Latef A. A. H. A., Hashem A., Rasool S., Abd Allah E. F., Alqarawi A. A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. J. Plant Biol. 59 407–426. 10.1007/s12374-016-0237-7 DOI
Leigh J., Hodge A., Fitter A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. New Phytol. 181 199–207. 10.1111/j.1469-8137.2008.02630.x PubMed DOI
Lekberg Y., Hammer E. C., Olsson P. A. (2010). Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. FEMS Microbiol. Ecol. 74 336–345. 10.1111/j.1574-6941.2010.00956.x PubMed DOI
Lekberg Y., Rosendahl S., Michelsen A., Olsson P. A. (2013). Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. Plant Soil 368 547–555. 10.1007/s11104-012-1534-7 DOI
Lenoir I., Fontaine J., Sahraoui A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. Phytochemistry 123 4–15. 10.1016/j.phytochem.2016.01.002 PubMed DOI
Lobell D. B., Gourdji S. M. (2012). The influence of climate change on global crop productivity. Plant Physiol. 160 1686–1697. 10.1104/pp.112.208298 PubMed DOI PMC
López-Mondéjar R., Brabcová V., Štursová M., Davidová A., Jansa J., Cajthaml T., et al. (2018). Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. ISME J. 10.1038/s41396-018-0084-2 [Epub ahead of print]. PubMed DOI PMC
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A. (1990). A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 115 495–501. 10.1111/j.1469-8137.1990.tb00476.x PubMed DOI
Millar N. S., Bennett A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. Oecologia 182 625–641. 10.1007/s00442-016-3673-7 PubMed DOI PMC
Mohan J. E., Cowden C. C., Baas P., Dawadi A., Frankson P. T., Helmick K., et al. (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. Fungal Ecol. 10 3–19. 10.1016/j.funeco.2014.01.005 DOI
Nakano A., Takahashi K., Kimura M. (1999). The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. Mycorrhiza 9 41–47. 10.1007/s005720050261 DOI
Newsham K. K., Fitter A. H., Watkinson A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. J. Ecol. 83 991–1000. 10.2307/2261180 DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using malachite green. Soil Sci. Soc. Am. J. 55 892–895. 10.2136/sssaj1991.03615995005500030046x PubMed DOI
Olsson P. A. (1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. FEMS Microbiol. Ecol. 29 303–310. 10.1111/j.1574-6941.1999.tb00621.x DOI
Pinto H., Sharwood R. E., Tissue D. T., Ghannoum O. (2014). Photosynthesis of C3 C3-C4 and C4 grasses at glacial CO2. J. Exp. Bot. 65 3669–3681. 10.1093/jxb/eru155 PubMed DOI PMC
Pollastri S., Savvides A., Pesando M., Lumini E., Volpe M. G., Ozudogru E. A., et al. (2018). Impact of two arbuscular mycorrhizal fungi on Arundo donax L. response to salt stress. Planta 247 573–585. 10.1007/s00425-017-2808-3 PubMed DOI
Püschel D., Janoušková M., Hujslová M., Slavíková R., Gryndlerová H., Jansa J. (2016). Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol. Evol. 6 4332–4346. 10.1002/ece3.2207 PubMed DOI PMC
Querejeta J. I., Barea J. M., Allen M. F., Caravaca F., Roldán A. (2003). Differential response of delta δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. Oecologia 135 510–515. 10.1007/s00442-003-1209-4 PubMed DOI
Řezáčová V., Konvalinková T., Jansa J. (2017a). “Carbon fluxes in mycorrhizal plants,” in Mycorrhiza - Eco-Physiology, Secondary Metabolites, Nanomaterials eds Varma A., Prasad R., Tuteja N. (Basel: Springer International Publishing; ) 1–21.
Řezáčová V., Slavíková R., Konvalinková T., Hujslová M., Gryndlerová H., Gryndler M., et al. (2017b). Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native Panicum grasses—A case of dysfunctional symbiosis. Pedobiologia 62 48–55.
Řezáčová V., Slavíková R., Zemková L., Konvalinková T., Procházková V., Št’ovíček V., et al. (2018). Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 Panicum grasses. Plant Soil (in press) 10.1007/s11104-018-3606-9 DOI
Rillig M. C., Wright S. F., Shaw M. R., Field C. B. (2002). Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. Oikos 97 52–58. 10.1034/j.1600-0706.2002.970105.x DOI
Roth R., Paszkowski U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr. Opin. Plant Biol. 39 50–56. 10.1016/j.pbi.2017.05.008 PubMed DOI
Saia S., Benítez E., García-Garrido J., Settanni L., Amato G., Giambalvo D. (2014). The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. J. Agric. Sci. 152 370–378. 10.1017/S002185961300004X DOI
Schüßler A., Walker C. (2010). The Glomeromycota: A Species List With New Families and New Genera. Available at: http://www.amf-phylogeny.com/species_infos/higher_taxa/funneliformis_claroideoglomus_rhizophagus_redeckera.pdf [accessed February 2018].
Slavíková R., Püschel D., Janoušková M., Hujslová M., Konvalinková T., Gryndlerová H., et al. (2017). Monitoring CO2 emissions to gain a dynamic view of carbon allocation to arbuscular mycorrhizal fungi. Mycorrhiza 27 35–51. 10.1007/s00572-016-0731-2 PubMed DOI
Smith S. E., Jakobsen I., Grønlund M., Smith F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. Plant Physiol. 156 1050–1057. 10.1104/pp.111.174581 PubMed DOI PMC
Smith S. E., Read D. J. (2008). Mycorrhizal Symbiosis 3rd Edn. New York, NY: Academic Press.
Smith S. E., Smith F. A., Jakobsen I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 162 511–524. 10.1111/j.1469-8137.2004.01039.x DOI
Spatafora J. W., Chang Y., Benny G. L., Lazarus K., Smith M. E., Berbee M. L., et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108 1028–1046. 10.3852/16-042 PubMed DOI PMC
Sumner J. L., Morgan E. D., Evans H. C. (1969). The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. Can. J. Microbiol. 15 515–520. 10.1139/m69-089 PubMed DOI
Svenningsen N. B., Watts-Williams S. J., Joner E. J., Battini F., Efthymiou A., Cruz-Paredes C., et al. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. ISME J. 10.1038/s41396-018-0059-3 [Epub ahead of print]. PubMed DOI PMC
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities–marker design, verification, calibration and field validation. Mol. Ecol. Res. 12 219–232. 10.1111/j.1755-0998.2011.03086.x PubMed DOI
Tobar R., Azcón R., Barea J. M. (1994). Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. New Phytol. 126 119–122. 10.1111/j.1469-8137.1994.tb07536.x DOI
Treseder K. K. (2016). Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. Botany 94 417–423. 10.1139/cjb-2015-0245 DOI
van der Heijden M. G. A., Klironomos J. N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. Nature 396 69–72. 10.1038/23932 DOI
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. New Phytol. 205 1406–1423. 10.1111/nph.13288 PubMed DOI
Vandenkoornhuyse P., Ridgway K. P., Watson I. J., Fitter A. H., Young J. P. W. (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities. Mol. Ecol. 12 3085–3095. 10.1046/j.1365-294X.2003.01967.x PubMed DOI
Vigo C., Norman J. R., Hooker J. E. (2000). Biocontrol of the pathogen Phytophthora parasitica by arbuscular mycorrhizal fungi is a consequence of effects on infection loci. Plant Pathol. 49 509–514. 10.1046/j.1365-3059.2000.00473.x DOI
Voříšková A., Jansa J., Püschel D., Krüger M., Cajthaml T., Vosátka M., et al. (2017). Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza 27 577–585. 10.1007/s00572-017-0777-9 PubMed DOI
Voznesenskaya E. V., Franceschi V. R., Kiirats O., Freitag H., Edwards G. E. (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. Nature 414 543–546. 10.1038/35107073 PubMed DOI
Wagg C., Jansa J., Schmid B., van der Heijden M. G. A. (2011). Belowground biodiversity effects of plant symbionts support aboveground productivity. Ecol. Lett. 14 1001–1009. 10.1111/j.1461-0248.2011.01666.x PubMed DOI
Walder F., Niemann H., Lehmann M. F., Boller T., Wiemken A., Courty P. E. (2013). Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). Soil Biol. Biochem. 58 341–344. 10.1016/j.soilbio.2012.12.008 DOI
Walder F., Niemann H., Natarajan M., Lehmann M. F., Boller T., Wiemken A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. Plant Physiol. 159 789–797. 10.1104/pp.112.195727 PubMed DOI PMC
Walder F., van der Heijden M. G. A. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. Nat. Plants 1:15159. 10.1038/Nplants.2015.159 PubMed DOI
Waller S. S., Lewis J. K. (1979). Occurrence of C3 and C4 photosynthetic pathways in North American grasses. J. Range Manag. Arch. 32 12–28. 10.2307/3897378 DOI
Wang G. H., Sheng L. C., Zhao D., Sheng J. D., Wang X. R., Liao H. (2016). Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. Front. Plant Sci. 7:1901. 10.3389/fpls.2015.01901 PubMed DOI PMC
Welc M., Bünemann E. K., Fliessbach A., Frossard E., Jansa J. (2012). Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. Soil Biol. Biochem. 49 184–192. 10.1016/j.soilbio.2012.01.032 DOI
Weremijewicz J., Sternberg L. D. L. O., Janos D. P. (2016). Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. New Phytol. 212 461–471. 10.1111/nph.14041 PubMed DOI
Zhu X. C., Song F. B., Liu S. Q., Liu T. D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. Plant Soil 346 189–199. 10.1007/s11104-011-0809-8 DOI
Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans
Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin