Little Cross-Feeding of the Mycorrhizal Networks Shared Between C3-Panicum bisulcatum and C4-Panicum maximum Under Different Temperature Regimes
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
29681914
PubMed Central
PMC5897505
DOI
10.3389/fpls.2018.00449
Knihovny.cz E-zdroje
- Klíčová slova
- C3 and C4 photosynthesis, Panicum sp., arbuscular mycorrhiza, common mycorrhizal networks (CMNs), community, natural 13C isotopic abundance, quantitative real-time PCR, temperature,
- Publikační typ
- časopisecké články MeSH
Common mycorrhizal networks (CMNs) formed by arbuscular mycorrhizal fungi (AMF) interconnect plants of the same and/or different species, redistributing nutrients and draining carbon (C) from the different plant partners at different rates. Here, we conducted a plant co-existence (intercropping) experiment testing the role of AMF in resource sharing and exploitation by simplified plant communities composed of two congeneric grass species (Panicum spp.) with different photosynthetic metabolism types (C3 or C4). The grasses had spatially separated rooting zones, conjoined through a root-free (but AMF-accessible) zone added with 15N-labeled plant (clover) residues. The plants were grown under two different temperature regimes: high temperature (36/32°C day/night) or ambient temperature (25/21°C day/night) applied over 49 days after an initial period of 26 days at ambient temperature. We made use of the distinct C-isotopic composition of the two plant species sharing the same CMN (composed of a synthetic AMF community of five fungal genera) to estimate if the CMN was or was not fed preferentially under the specific environmental conditions by one or the other plant species. Using the C-isotopic composition of AMF-specific fatty acid (C16:1ω5) in roots and in the potting substrate harboring the extraradical AMF hyphae, we found that the C3-Panicum continued feeding the CMN at both temperatures with a significant and invariable share of C resources. This was surprising because the growth of the C3 plants was more susceptible to high temperature than that of the C4 plants and the C3-Panicum alone suppressed abundance of the AMF (particularly Funneliformis sp.) in its roots due to the elevated temperature. Moreover, elevated temperature induced a shift in competition for nitrogen between the two plant species in favor of the C4-Panicum, as demonstrated by significantly lower 15N yields of the C3-Panicum but higher 15N yields of the C4-Panicum at elevated as compared to ambient temperature. Although the development of CMN (particularly of the dominant Rhizophagus and Funneliformis spp.) was somewhat reduced under high temperature, plant P uptake benefits due to AMF inoculation remained well visible under both temperature regimes, though without imminent impact on plant biomass production that actually decreased due to inoculation with AMF.
Zobrazit více v PubMed
Aroca R., Porcel R., Ruiz-Lozano J. M. (2007). How does arbuscular mycorrhizal symbiosis regulate root hydraulic properties and plasma membrane aquaporins in PubMed
Augé R. M., Toler H. D., Saxton A. M. (2014). Arbuscular mycorrhizal symbiosis and osmotic adjustment in response to NaCl stress: a meta-analysis. PubMed DOI PMC
Augé R. M., Toler H. D., Saxton A. M. (2015). Arbuscular mycorrhizal symbiosis alters stomatal conductance of host plants more under drought than under amply watered conditions: a meta-analysis. PubMed DOI
Bever J. D., Dickie I. A., Facelli E., Facelli J. M., Klironomos J., Moora M., et al. (2010). Rooting theories of plant community ecology in microbial interactions. PubMed DOI PMC
Bever J. D., Richardson S. C., Lawrence B. M., Holmes J., Watson M. (2009). Preferential allocation to beneficial symbiont with spatial structure maintains mycorrhizal mutualism. PubMed DOI
Bryla D. R., Eissenstat D. M. (2005). “Respiratory costs of mycorrhiza associations,” in
Bücking H., Kafle A. (2015). Role of arbuscular mycorrhizal fungi in the nitrogen uptake of plants: current knowledge and research gaps. DOI
Bücking H., Mensah J. A., Fellbaum C. R. (2016). Common mycorrhizal networks and their effect on the bargaining power of the fungal partner in the arbuscular mycorrhizal symbiosis. PubMed DOI PMC
Bukovská P., Bonkowski M., Konvalinková T., Beskid O., Hujslová M., Püschel D., et al. (2018). Utilization of organic nitrogen by arbuscular mycorrhizal fungi - is there a specific role for protists and ammonia oxidizers? PubMed DOI
Bunn R., Lekberg Y., Zabinski C. (2009). Arbuscular mycorrhizal fungi ameliorate temperature stress in thermophilic plants. PubMed DOI
Chandrasekaran M., Kim K., Krishnamoorthy R., Walitang D., Sundaram S., Joe M. M., et al. (2016). Mycorrhizal symbiotic efficiency on C3 and C4 plants under salinity stress - a meta-analysis. PubMed DOI PMC
Compant S., van der Heijden M. G. A., Sessitsch A. (2010). Climate change effects on beneficial plant-microorganism interactions. PubMed DOI
Compant S., van der Heijden M. G. A., Sessitsch A. (2013). “Soil warming effects on beneficial plant-microbe interactions,” in
R Core Team (2013).
Couillerot O., Ramirez-Trujillo A., Walker V., von Felten A., Jansa J., Maurhofer M., et al. (2013). Comparison of prominent PubMed DOI
Courty P. E., Doubková P., Calabrese S., Niemann H., Lehmann M. F., Vosátka M., et al. (2015). Species-dependent partitioning of C and N stable isotopes between arbuscular mycorrhizal fungi and their C3 and C4 hosts. DOI
Davison J., Moora M., Öpik M., Adholeya A., Ainsaar L., Ba A., et al. (2015). Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. PubMed DOI
Dessureault-Rompré J., Zebarth B. J., Georgallas A., Burton D. L., Grant C. A., Drurye C. F. (2010). Temperature dependence of soil nitrogen mineralization rate: comparison of mathematical models, reference temperatures and origin of the soils. DOI
Ehleringer J. R., Monson R. K. (1993). Evolutionary and ecological aspects of photosynthetic pathway variation. DOI
Fellbaum C. R., Gachomo E. W., Beesetty Y., Choudhari S., Strahan G. D., Pfeffer P. E., et al. (2012). Carbon availability triggers fungal nitrogen uptake and transport in arbuscular mycorrhizal symbiosis. PubMed DOI PMC
Fellbaum C. R., Mensah J. A., Cloos A. J., Strahan G. E., Pfeffer P. E., Kiers E. T., et al. (2014). Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. PubMed DOI
Fitter A. H., Heinemeyer A., Staddon P. L. (2000). The impact of elevated CO2 and global climate change on arbuscular mycorrhizas: a mycocentric approach. DOI
Frostegård A., Tunlid A., Bååth E. (1991). Microbial biomass measured as total lipid phosphate in soils of different organic content. DOI
Hawkes C. V., Hartley I. P., Ineson P., Fitter A. H. (2008). Soil temperature affects carbon allocation within arbuscular mycorrhizal networks and carbon transport from plant to fungus. DOI
Heinemeyer A., Ineson P., Ostle N., Fitter A. H. (2006). Respiration of the external mycelium in the arbuscular mycorrhizal symbiosis shows strong dependence on recent photosynthates and acclimation to temperature. PubMed DOI
Helgason T., Merryweather J. W., Denison J., Wilson P., Young J. P. W., Fitter A. H. (2002). Selectivity and functional diversity in arbuscular mycorrhizas of co-occurring fungi and plants from a temperate deciduous woodland. DOI
Hetrick B. A. D., Wilson G. W. T., Todd T. C. (1990). Differential responses of C3 and C4 grasses to mycorrhizal symbiosis, phosphorus fertilization, and soil-microorganisms. DOI
Hewitt E. J. (1966).
Hodge A., Fitter A. H. (2010). Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. PubMed DOI PMC
Hodge A., Storer K. (2015). Arbuscular mycorrhiza and nitrogen: implications for individual plants through to ecosystems. DOI
Hoeksema J. D., Chaudhary V. B., Gehring C. A., Johnson N. C., Karst J., Koide R. T., et al. (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. PubMed DOI
Jakobsen I., Rosendahl L. (1990). Carbon flow into soil and external hyphae from roots of mycorrhizal cucumber plants. DOI
Jansa J., Erb A., Oberholzer H. R., Šmilauer P., Egli S. (2014). Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. PubMed DOI
Jansa J., Mozafar A., Frossard E. (2005). Phosphorus acquisition strategies within arbuscular mycorrhizal fungal community of a single field site. DOI
Jansa J., Smith F. A., Smith S. E. (2008). Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? PubMed
Johnson N. C., Wilson G. W. T., Wilson J. A., Miller R. M., Bowker M. A. (2015). Mycorrhizal phenotypes and the law of the minimum. PubMed DOI
Kiers E. T., Duhamel M., Beesetty Y., Mensah J. A., Franken O., Verbruggen E., et al. (2011). Reciprocal rewards stabilize cooperation in the mycorrhizal symbiosis. PubMed DOI
Konvalinková T., Püschel D., Řezáčová V., Gryndlerová H., Jansa J. (2017). Carbon flow from plant to arbuscular mycorrhizal fungi is reduced under phosphorus fertilization. DOI
Koske R. E., Gemma J. N. (1989). A modified procedure for staining roots to detect VA-mycorrhizas. DOI
Krak K., Janoušková M., Caklová P., Vosátka M., Štorchová H. (2012). Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus PubMed DOI PMC
Latef A. A. H. A., Hashem A., Rasool S., Abd Allah E. F., Alqarawi A. A., Egamberdieva D., et al. (2016). Arbuscular mycorrhizal symbiosis and abiotic stress in plants: a review. DOI
Leigh J., Hodge A., Fitter A. H. (2009). Arbuscular mycorrhizal fungi can transfer substantial amounts of nitrogen to their host plant from organic material. PubMed DOI
Lekberg Y., Hammer E. C., Olsson P. A. (2010). Plants as resource islands and storage units - adopting the mycocentric view of arbuscular mycorrhizal networks. PubMed DOI
Lekberg Y., Rosendahl S., Michelsen A., Olsson P. A. (2013). Seasonal carbon allocation to arbuscular mycorrhizal fungi assessed by microscopic examination, stable isotope probing and fatty acid analysis. DOI
Lenoir I., Fontaine J., Sahraoui A. L. H. (2016). Arbuscular mycorrhizal fungal responses to abiotic stresses: a review. PubMed DOI
Lobell D. B., Gourdji S. M. (2012). The influence of climate change on global crop productivity. PubMed DOI PMC
López-Mondéjar R., Brabcová V., Štursová M., Davidová A., Jansa J., Cajthaml T., et al. (2018). Decomposer food web in a deciduous forest shows high share of generalist microorganisms and importance of microbial biomass recycling. PubMed DOI PMC
McGonigle T. P., Miller M. H., Evans D. G., Fairchild G. L., Swan J. A. (1990). A new method which gives an objective-measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. PubMed DOI
Millar N. S., Bennett A. E. (2016). Stressed out symbiotes: hypotheses for the influence of abiotic stress on arbuscular mycorrhizal fungi. PubMed DOI PMC
Mohan J. E., Cowden C. C., Baas P., Dawadi A., Frankson P. T., Helmick K., et al. (2014). Mycorrhizal fungi mediation of terrestrial ecosystem responses to global change: mini-review. DOI
Nakano A., Takahashi K., Kimura M. (1999). The carbon origin of arbuscular mycorrhizal fungi estimated from δ13C values of individual spores. DOI
Newsham K. K., Fitter A. H., Watkinson A. R. (1995). Arbuscular mycorrhiza protect an annual grass from root pathogenic fungi in the field. DOI
Ohno T., Zibilske L. M. (1991). Determination of low concentrations of phosphorus in soil extracts using malachite green. DOI
Olsson P. A. (1999). Signature fatty acids provide tools for determination of the distribution and interactions of mycorrhizal fungi in soil. DOI
Pinto H., Sharwood R. E., Tissue D. T., Ghannoum O. (2014). Photosynthesis of C3 C3-C4 and C4 grasses at glacial CO2. PubMed DOI PMC
Pollastri S., Savvides A., Pesando M., Lumini E., Volpe M. G., Ozudogru E. A., et al. (2018). Impact of two arbuscular mycorrhizal fungi on PubMed DOI
Püschel D., Janoušková M., Hujslová M., Slavíková R., Gryndlerová H., Jansa J. (2016). Plant-fungus competition for nitrogen erases mycorrhizal growth benefits of PubMed DOI PMC
Querejeta J. I., Barea J. M., Allen M. F., Caravaca F., Roldán A. (2003). Differential response of delta δ13C and water use efficiency to arbuscular mycorrhizal infection in two aridland woody plant species. PubMed DOI
Řezáčová V., Konvalinková T., Jansa J. (2017a). “Carbon fluxes in mycorrhizal plants,” in
Řezáčová V., Slavíková R., Konvalinková T., Hujslová M., Gryndlerová H., Gryndler M., et al. (2017b). Imbalanced carbon-for-phosphorus exchange between European arbuscular mycorrhizal fungi and non-native
Řezáčová V., Slavíková R., Zemková L., Konvalinková T., Procházková V., Št’ovíček V., et al. (2018). Mycorrhizal symbiosis induces plant carbon reallocation differently in C3 and C4 DOI
Rillig M. C., Wright S. F., Shaw M. R., Field C. B. (2002). Artificial climate warming positively affects arbuscular mycorrhizae but decreases soil aggregate water stability in an annual grassland. DOI
Roth R., Paszkowski U. (2017). Plant carbon nourishment of arbuscular mycorrhizal fungi. PubMed DOI
Saia S., Benítez E., García-Garrido J., Settanni L., Amato G., Giambalvo D. (2014). The effect of arbuscular mycorrhizal fungi on total plant nitrogen uptake and nitrogen recovery from soil organic material. DOI
Schüßler A., Walker C. (2010).
Slavíková R., Püschel D., Janoušková M., Hujslová M., Konvalinková T., Gryndlerová H., et al. (2017). Monitoring CO PubMed DOI
Smith S. E., Jakobsen I., Grønlund M., Smith F. A. (2011). Roles of arbuscular mycorrhizas in plant phosphorus nutrition: interactions between pathways of phosphorus uptake in arbuscular mycorrhizal roots have important implications for understanding and manipulating plant phosphorus acquisition. PubMed DOI PMC
Smith S. E., Read D. J. (2008).
Smith S. E., Smith F. A., Jakobsen I. (2004). Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. DOI
Spatafora J. W., Chang Y., Benny G. L., Lazarus K., Smith M. E., Berbee M. L., et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. PubMed DOI PMC
Sumner J. L., Morgan E. D., Evans H. C. (1969). The effect of growth temperature on the fatty acid composition of fungi in the order Mucorales. PubMed DOI
Svenningsen N. B., Watts-Williams S. J., Joner E. J., Battini F., Efthymiou A., Cruz-Paredes C., et al. (2018). Suppression of the activity of arbuscular mycorrhizal fungi by the soil microbiota. PubMed DOI PMC
Thonar C., Erb A., Jansa J. (2012). Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities–marker design, verification, calibration and field validation. PubMed DOI
Tobar R., Azcón R., Barea J. M. (1994). Improved nitrogen uptake and transport from 15N-labeled nitrate by external hyphae of arbuscular mycorrhiza under water-stressed conditions. DOI
Treseder K. K. (2016). Model behavior of arbuscular mycorrhizal fungi: predicting soil carbon dynamics under climate change. DOI
van der Heijden M. G. A., Klironomos J. N., Ursic M., Moutoglis P., Streitwolf-Engel R., Boller T., et al. (1998). Mycorrhizal fungal diversity determines plant biodiversity, ecosystem variability and productivity. DOI
van der Heijden M. G. A., Martin F. M., Selosse M. A., Sanders I. R. (2015). Mycorrhizal ecology and evolution: the past, the present, and the future. PubMed DOI
Vandenkoornhuyse P., Ridgway K. P., Watson I. J., Fitter A. H., Young J. P. W. (2003). Co-existing grass species have distinctive arbuscular mycorrhizal communities. PubMed DOI
Vigo C., Norman J. R., Hooker J. E. (2000). Biocontrol of the pathogen DOI
Voříšková A., Jansa J., Püschel D., Krüger M., Cajthaml T., Vosátka M., et al. (2017). Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? PubMed DOI
Voznesenskaya E. V., Franceschi V. R., Kiirats O., Freitag H., Edwards G. E. (2001). Kranz anatomy is not essential for terrestrial C4 plant photosynthesis. PubMed DOI
Wagg C., Jansa J., Schmid B., van der Heijden M. G. A. (2011). Belowground biodiversity effects of plant symbionts support aboveground productivity. PubMed DOI
Walder F., Niemann H., Lehmann M. F., Boller T., Wiemken A., Courty P. E. (2013). Tracking the carbon source of arbuscular mycorrhizal fungi colonizing C3 and C4 plants using carbon isotope ratios (δ13C). DOI
Walder F., Niemann H., Natarajan M., Lehmann M. F., Boller T., Wiemken A. (2012). Mycorrhizal networks: common goods of plants shared under unequal terms of trade. PubMed DOI PMC
Walder F., van der Heijden M. G. A. (2015). Regulation of resource exchange in the arbuscular mycorrhizal symbiosis. PubMed DOI
Waller S. S., Lewis J. K. (1979). Occurrence of C3 and C4 photosynthetic pathways in North American grasses. DOI
Wang G. H., Sheng L. C., Zhao D., Sheng J. D., Wang X. R., Liao H. (2016). Allocation of nitrogen and carbon is regulated by nodulation and mycorrhizal networks in soybean/maize intercropping system. PubMed DOI PMC
Welc M., Bünemann E. K., Fliessbach A., Frossard E., Jansa J. (2012). Soil bacterial and fungal communities along a soil chronosequence assessed by fatty acid profiling. DOI
Weremijewicz J., Sternberg L. D. L. O., Janos D. P. (2016). Common mycorrhizal networks amplify competition by preferential mineral nutrient allocation to large host plants. PubMed DOI
Zhu X. C., Song F. B., Liu S. Q., Liu T. D. (2011). Effects of arbuscular mycorrhizal fungus on photosynthesis and water status of maize under high temperature stress. DOI
Editorial: Arbuscular Mycorrhizal Fungi: The Bridge Between Plants, Soils, and Humans
Arbuscular Mycorrhiza Mediates Efficient Recycling From Soil to Plants of Nitrogen Bound in Chitin