Intraradical dynamics of two coexisting isolates of the arbuscular mycorrhizal fungus Glomus intraradices sensu lato as estimated by real-time PCR of mitochondrial DNA
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu srovnávací studie, hodnotící studie, časopisecké články, práce podpořená grantem
PubMed
22407684
PubMed Central
PMC3346362
DOI
10.1128/aem.00035-12
PII: AEM.00035-12
Knihovny.cz E-zdroje
- MeSH
- DNA fungální chemie genetika MeSH
- Glomeromycota genetika růst a vývoj MeSH
- kořeny rostlin mikrobiologie MeSH
- kvantitativní polymerázová řetězová reakce metody MeSH
- Medicago sativa mikrobiologie MeSH
- mikrobiální interakce MeSH
- mitochondriální DNA genetika MeSH
- molekulární sekvence - údaje MeSH
- počet mikrobiálních kolonií metody MeSH
- sekvenční analýza DNA MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- DNA fungální MeSH
- mitochondriální DNA MeSH
Real-time PCR in nuclear ribosomal DNA (nrDNA) is becoming a well-established tool for the quantification of arbuscular mycorrhizal (AM) fungi, but this genomic region does not allow the specific amplification of closely related genotypes. The large subunit of mitochondrial DNA (mtDNA) has a higher-resolution power, but mtDNA-based quantification has not been previously explored in AM fungi. We applied real-time PCR assays targeting the large subunit of mtDNA to monitor the DNA dynamics of two isolates of Glomus intraradices sensu lato coexisting in the roots of medic (Medicago sativa). The mtDNA-based quantification was compared to quantification in nrDNA. The ratio of copy numbers determined by the nrDNA- and mtDNA-based assays consistently differed between the two isolates. Within an isolate, copy numbers of the nuclear and the mitochondrial genes were closely correlated. The two quantification approaches revealed similar trends in the dynamics of both isolates, depending on whether they were inoculated alone or together. After 12 weeks of cultivation, competition between the two isolates was observed as a decrease in the mtDNA copy numbers of one of them. The coexistence of two closely related isolates, which cannot be discriminated by nrDNA-based assays, was thus identified as a factor influencing the dynamics of AM fungal DNA in roots. Taken together, the results of this study show that real-time PCR assays targeted to the large subunit of mtDNA may become useful tools for the study of coexisting AM fungi.
Zobrazit více v PubMed
Alexander M. 1965. Most-probable-number method for microbial populations, p 1467–1472 In Black SA, Evans D, Ensminger LE, White JL, Clark FE. (ed), Methods of soil analysis part 2. Chemical and microbiological properties. American Society of Agronomy, Madison, WI
Alkan N, Gadkar V, Coburn J, Yarden O, Kapulnik Y. 2004. Quantification of the arbuscular mycorrhizal fungus Glomus intraradices in host tissue using real-time polymerase chain reaction. New Phytol. 161:877–885 PubMed
Alkan N, Gadkar V, Yarden O, Kapulnik Y. 2006. Analysis of quantitative interactions between two species of arbuscular mycorrhizal fungi, Glomus mosseae and G. intraradices, by real-time PCR. Appl. Environ. Microbiol. 72:4192–4199 PubMed PMC
Besserer A, et al. 2006. Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol. 4:1239–1247 PubMed PMC
Börstler B, Raab PA, Thiéry O, Morton JB, Redecker D. 2008. Genetic diversity of the arbuscular mycorrhizal fungus Glomus intraradices as determined by mitochondrial large subunit rRNA gene sequences is considerably higher than previously expected. New Phytol. 180:452–465 PubMed
Börstler B, Thiéry O, SýkorovÁ Z, Berner A, Redecker D. 2010. Diversity of mitochondrial large subunit rDNA haplotypes of Glomus intraradices in two agricultural field experiments and two semi-natural grasslands. Mol. Ecol. 19:1497–1511 PubMed
Corradi N, et al. 2007. Gene copy number polymorphisms in an arbuscular mycorrhizal fungal population. Appl. Environ. Microbiol. 73:366–369 PubMed PMC
Farmer MJ, et al. 2007. Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. Appl. Soil Ecol. 35:599–609
Fehrer J, Krak K, Chrtek J. 2009. Intra-individual polymorphism in diploid and apomictic polyploid hawkweeds (Hieracium, Lactuceae, Asteraceae): disentangling phylogenetic signal, reticulation, and noise. BMC Evol. Biol. 9:239. PubMed PMC
Filion M, St-Arnaud M, Jabaji-Hare SH. 2003. Direct quantification of fungal DNA from soil substrate using real-time PCR. J. Microbiol. Methods 53:67–76 PubMed
Gamper HA, van der Heijden MGA, Kowalchuk GA. 2010. Molecular trait indicators: moving beyond phylogeny in arbuscular mycorrhizal ecology. New Phytol. 185:67–82 PubMed
Gamper HA, Young JPW, Jones DL, Hodge A. 2008. Real-time PCR and microscopy: are the two methods measuring the same unit of arbuscular mycorrhizal fungal abundance? Fungal Genet. Biol. 45:581–596 PubMed
Gianinazzi S, Vosatka M. 2004. Inoculum of arbuscular mycorrhizal fungi for production systems: science meets business. Can. J. Bot. 82:1264–1271
Giovannetti M, Mosse B. 1980. Evaluation of techniques for measuring vesicular arbuscular mycorrhizal infection in roots. New Phytol. 84:489–500
Gollotte A, van Tuinen D, Atkinson D. 2004. Diversity of arbuscular mycorrhizal fungi colonising roots of the grass species Agrostis capillaris and Lolium perenne in a field experiment. Mycorrhiza 14:111–117 PubMed
Hall TA. 1999. BioEdit: a user-friendly biological sequence alignment editor and analysis suite. Nucleic Acids Symp. Ser. 41:95–98
Heid CA, Stevens J, Livak KJ, Williams PM. 1996. Real time quantitative PCR. Genome Res. 6:986–994 PubMed
Janoušková M, et al. 2009. Development and activity of Glomus intraradices as affected by co-existence with Glomus claroideum in one root system. Mycorrhiza 19:393–402 PubMed
Jansa J, Smith FA, Smith SE. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 177:779–789 PubMed
Koch AM, Croll D, Sanders IR. 2006. Genetic variability in a population of arbuscular mycorrhizal fungi causes variation in plant growth. Ecol. Lett. 9:103–110 PubMed
König S, et al. 2010. TaqMan Real-Time PCR assays to assess arbuscular mycorrhizal responses to field manipulation of grassland biodiversity: effects of soil characteristics, plant species richness, and functional traits. Appl. Environ. Microbiol. 76:3765–3775 PubMed PMC
Koske RE, Gemma JN. 1989. A modified procedure for staining roots to detect VA mycorrhizas. Mycol. Res. 92:486–505
Lang BF, Hijri M. 2009. The complete Glomus intraradices mitochondrial genome sequence–a milestone in mycorrhizal research. New Phytol. 183:4–6 PubMed
Lee J, Young JPW. 2009. The mitochondrial genome sequence of the arbuscular mycorrhizal fungus Glomus intraradices isolate 494 and implications for the phylogenetic placement of Glomus. New Phytol. 183:200–211 PubMed
Levina NN, Lew RR. 2006. The role of tip-localized mitochondria in hyphal growth. Fungal Genet. Biol. 43:65–74 PubMed
Lloyd MacGilp SA, et al. 1996. Diversity of the ribosomal internal transcribed spacers within and among isolates of Glomus mosseae and related mycorrhizal fungi. New Phytol. 133:103–111
Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316:1746–1748 PubMed
Munkvold L, Kjoller R, Vestberg M, Rosendahl S, Jakobsen I. 2004. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 164:357–364 PubMed
Pivato B, et al. 2007. Medicago species affect the community composition of arbuscular mycorrhizal fungi associated with roots. New Phytol. 176:197–210 PubMed
Raab PA, Brennwald A, Redecker D. 2005. Mitochondrial large ribosomal subunit sequences are homogeneous within isolates of Glomus (arbuscular mycorrhizal fungi, Glomeromycota). Mycol. Res. 109:1315–1322 PubMed
Rydlová J, Vosátka M. 2003. Effect of Glomus intraradices isolated from Pb-contaminated soil on Pb uptake by Agrostis capillaris is changed by its cultivation in a metal-free substrate. Folia Geobot. 38:155–165
Sanders IR. 2002. Specificity in the arbuscular mycorrhizal symbiosis, p 415–437 In van der Heijden MGA, Sanders IR. (ed), Mycorrhizal ecology. Springer, Berlin, Germany
Sanders IR, Alt M, Groppe K, Boller T, Wiemken A. 1995. Identification of ribosomal DNA polymorphisms among and within spores of the Glomales: application to studies on the genetic diversity of arbuscular mycorrhizal fungal communities. New Phytol. 130:419–427
Smith SE, Dickson S. 1991. Quantification of active vesicular arbuscular mycorrhizal infection using image-analysis and other techniques. Aust. J. Plant Physiol. 18:637–648
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis, 3rd ed Academic Press, Amsterdam, The Netherlands
Stockinger H, Walker C, Schüssler A. 2009. ‘Glomus intraradices DAOM197198’, a model fungus in arbuscular mycorrhiza research, is not Glomus intraradices. New Phytol. 183:1176–1187 PubMed
Stukenbrock EH, Rosendahl S. 2005. Development and amplification of multiple co-dominant genetic markers from single spores of arbuscular mycorrhizal fungi by nested multiplex PCR. Fungal Genet. Biol. 42:73–80 PubMed
Sýkorová Z, et al. 2012. Long-term tracing of Rhizophagus irregularis isolate BEG140 inoculated on Phalaris arundinacea in a coal mine spoil bank, using mitochondrial large subunit rDNA markers. Mycorrhiza 22:69–80 PubMed
Tamasloukht M, et al. 2003. Root factors induce mitochondrial-related gene expression and fungal respiration during the developmental switch from asymbiosis to presymbiosis in the arbuscular mycorrhizal fungus Gigaspora rosea. Plant Physiol. 131:1468–1478 PubMed PMC
Taris N, Lang RP, Camara MD. 2008. Sequence polymorphism can produce serious artifacts in real-time PCR assays: hard lessons from Pacific oysters. BMC Genomics 9:234. PubMed PMC
Thiéry O, Börstler B, Ineichen K, Redecker D. 2010. Evolutionary dynamics of introns and homing endonuclease ORFs in a region of the large subunit of the mitochondrial rRNA in Glomus species (arbuscular mycorrhizal fungi, Glomeromycota). Mol. Phylogenet. Evol. 55:599–610 PubMed
Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG. 1997. The ClustalX windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 24:4876–4882 PubMed PMC
Thonar C. 2009. Synthetic mycorrhizal communities–establishment and functioning. Ph.D. thesis. ETH, Zürich, Switzerland
Thonar C, Erb A, Jansa J. 2011. Real-time PCR to quantify composition of arbuscular mycorrhizal fungal communities–marker design, verification, calibration and field validation. Mol. Ecol. Resour. 12:219–232 PubMed
Tisserant B, Gianinazzi-Pearson V, Gianinazzi S, Gollotte A. 1993. In planta histochemical staining of fungal alkaline phosphatase activity for analysis of efficient arbuscular mycorrhizal infections. Mycol. Res. 97:245–250
Trouvelot A, Kough JL, Gianinazzi-Pearson V. 1986. Mesure du taux de mycorhization VA d'un systeme radiculaire. Recherche de methodes d'estimation ayant une signification fonctionnelle, p 217–221 In Gianinazzi-Pearson V, Gianinazzi S. (ed), Physiological and genetical aspects of mycorrhizae. INRA, Paris, France
Van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V. 1998. Characterization of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol. Ecol. 7:879–887 PubMed
Westermann B, Prokisch H. 2002. Mitochondrial dynamics in filamentous fungi. Fungal Genet. Biol. 36:91–97 PubMed
Wilson JM. 1984. Competition for infection between vesicular arbuscular mycorrhizal fungi. New Phytol. 97:427–435
GENBANK
JF966360, JF966361, JF966362, JF966363, JF966364, JF966365, JF966366, JF966367, JF966368, JF966369, JF966370