Quantification of arbuscular mycorrhizal fungal DNA in roots: how important is material preservation?
Jazyk angličtina Země Německo Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- DNA fungální genetika izolace a purifikace MeSH
- kořeny rostlin chemie růst a vývoj mikrobiologie MeSH
- Medicago truncatula chemie růst a vývoj mikrobiologie MeSH
- mykorhiza chemie genetika MeSH
- ochrana biologická MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA fungální MeSH
Monitoring populations of arbuscular mycorrhizal fungi (AMF) in roots is a pre-requisite for improving our understanding of AMF ecology and functioning of the symbiosis in natural conditions. Among other approaches, quantification of fungal DNA in plant tissues by quantitative real-time PCR is one of the advanced techniques with a great potential to process large numbers of samples and to deliver truly quantitative information. Its application potential would greatly increase if the samples could be preserved by drying, but little is currently known about the feasibility and reliability of fungal DNA quantification from dry plant material. We addressed this question by comparing quantification results based on dry root material to those obtained from deep-frozen roots of Medicago truncatula colonized with Rhizophagus sp. The fungal DNA was well conserved in the dry root samples with overall fungal DNA levels in the extracts comparable with those determined in extracts of frozen roots. There was, however, no correlation between the quantitative data sets obtained from the two types of material, and data from dry roots were more variable. Based on these results, we recommend dry material for qualitative screenings but advocate using frozen root materials if precise quantification of fungal DNA is required.
Zobrazit více v PubMed
Mol Ecol. 2014 Feb;23(3):733-46 PubMed
Ecology. 2011 Jun;92(6):1303-13 PubMed
New Phytol. 2009 Oct;184(2):424-437 PubMed
Appl Environ Microbiol. 2006 Jun;72(6):4192-9 PubMed
Appl Environ Microbiol. 2013 Oct;79(20):6507-15 PubMed
New Phytol. 2010 Oct;188(1):223-41 PubMed
Ecol Appl. 2008 Mar;18(2):527-36 PubMed
Mycorrhiza. 2013 Jul;23(5):341-8 PubMed
FEMS Microbiol Ecol. 2011 Oct;78(1):103-15 PubMed
J Plant Physiol. 2004 Dec;161(12):1379-83 PubMed
Mycorrhiza. 2004 Apr;14(2):111-7 PubMed
Fungal Genet Biol. 2008 May;45(5):581-96 PubMed
Appl Environ Microbiol. 2012 May;78(10):3630-7 PubMed
Mol Ecol Resour. 2012 Mar;12(2):219-32 PubMed
J Microbiol Methods. 2010 Aug;82(2):124-30 PubMed
Appl Environ Microbiol. 2008 Sep;74(18):5776-83 PubMed
New Phytol. 2008;177(3):779-789 PubMed
J Microbiol Methods. 2003 Apr;53(1):67-76 PubMed
Mol Ecol. 2014 Apr;23(8):2118-35 PubMed
Appl Environ Microbiol. 2010 Jun;76(12):3765-75 PubMed
Mycorrhiza. 2005 Jul;15(5):365-72 PubMed
Theor Appl Genet. 2008 Aug;117(3):343-52 PubMed
Science. 2011 Aug 12;333(6044):880-2 PubMed