Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference?

. 2017 Aug ; 27 (6) : 577-585. [epub] 20170531

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid28569349
Odkazy

PubMed 28569349
DOI 10.1007/s00572-017-0777-9
PII: 10.1007/s00572-017-0777-9
Knihovny.cz E-zdroje

Root colonization by arbuscular mycorrhizal fungi (AMF) can be quantified by different approaches. We compared two approaches that enable discrimination of specific AMF taxa and are therefore emerging as alternative to most commonly performed microscopic quantification of AMF in roots: quantitative real-time PCR (qPCR) using markers in nuclear ribosomal DNA (nrDNA) and mitochondrial ribosomal DNA (mtDNA). In a greenhouse experiment, Medicago truncatula was inoculated with four isolates belonging to different AMF species (Rhizophagus irregularis, Claroideoglomus claroideum, Gigaspora margarita and Funneliformis mosseae). The AMF were quantified in the root samples by qPCR targeted to both markers, microscopy and contents of AMF-specific phospholipid fatty acids (PLFA). Copy numbers of nrDNA and mtDNA were closely related within all isolates; however, the slopes and intercepts of the linear relationships significantly differed among the isolates. Across all isolates, a large proportion of variance in nrDNA copy numbers was explained by root colonization intensity or contents of AMF-specific PLFA, while variance in mtDNA copy numbers was mainly explained by differences among AMF isolates. We propose that the encountered inter-isolate differences in the ratios of mtDNA and nrDNA copy numbers reflect different physiological states of the isolates. Our results suggest that nrDNA is a more suitable marker region than mtDNA for the quantification of multiple AMF taxa as its copy numbers are better related to fungal biomass across taxa than are copy numbers of mtDNA.

Zobrazit více v PubMed

J Hazard Mater. 2016 Jan 15;301:17-26 PubMed

Mycorrhiza. 2002 Aug;12(4):181-4 PubMed

New Phytol. 2007;176(1):197-210 PubMed

BMC Evol Biol. 2011 Feb 24;11:51 PubMed

Mycorrhiza. 2016 Oct;26(7):721-33 PubMed

Mycologia. 2016 Sep;108(5):1028-1046 PubMed

Front Plant Sci. 2015 Feb 13;6:65 PubMed

Ecol Lett. 2011 Oct;14(10):1001-9 PubMed

Microsc Res Tech. 1994 Feb 15;27(3):220-32 PubMed

Appl Environ Microbiol. 2013 Oct;79(20):6507-15 PubMed

New Phytol. 2009;183(1):200-11 PubMed

J Plant Physiol. 2004 Dec;161(12):1379-83 PubMed

Plant Cell Environ. 2011 Sep;34(9):1577-85 PubMed

Appl Microbiol Biotechnol. 2013 May;97(10):4639-49 PubMed

Mycorrhiza. 2015 Apr;25(3):205-14 PubMed

Genome Biol Evol. 2013;5(9):1628-43 PubMed

Science. 2011 Aug 12;333(6044):880-2 PubMed

Fungal Genet Biol. 2006 Feb;43(2):65-74 PubMed

Mycorrhiza. 2016 Oct;26(7):747-55 PubMed

Plant Physiol. 2003 Mar;131(3):1468-78 PubMed

New Phytol. 2013 Oct;200(1):211-21 PubMed

Appl Environ Microbiol. 2007 Jan;73(1):366-9 PubMed

Front Plant Sci. 2017 Mar 27;8:390 PubMed

New Phytol. 2017 Apr;214(2):632-643 PubMed

New Phytol. 2008;180(2):452-65 PubMed

Appl Environ Microbiol. 2012 May;78(10):3630-7 PubMed

New Phytol. 2010 Jan;185(1):67-82 PubMed

Mol Ecol. 2014 Feb;23(3):733-46 PubMed

Genome Biol Evol. 2014 Dec 19;7(1):96-105 PubMed

New Phytol. 2012 May;194(3):836-45 PubMed

J Microbiol Methods. 2003 Apr;53(1):67-76 PubMed

Fungal Genet Biol. 2008 May;45(5):581-96 PubMed

Mol Ecol Resour. 2012 Mar;12(2):219-32 PubMed

New Phytol. 2005 Oct;168(1):189-204 PubMed

New Phytol. 2008;177(3):779-89 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...