... - Introduction to Plasmid Purification 11 -- Alkaline Lysis 11 -- Silica Adsorption 12 -- DNA Quantification ... ... Frame 15 -- Laboratory Exercises 16 -- Alkaline Lysis and Silica Adsorption Protocol 16 -- DNA Quantification ... ... Product 31 -- Check PCR Reactions on an Agarose Gel 31 -- Spin Column Cleanup of PCR Product 31 -- Quantification ... ... mRNA Levels by RT-qPCR: Part 2 141 -- Introduction 141 -- Laboratory Exercise 144 -- Relative Quantification ... ... Part 2 153 -- Introduction 153 -- Laboratory Exercises 153 -- Agarose Gel Electrophoresis 153 -- Quantification ...
3rd ed. xxvi, 200 s. : il. ; 28 cm
- MeSH
- Molecular Biology MeSH
- Protein Engineering MeSH
- DNA, Recombinant MeSH
- Publication type
- Monograph MeSH
- Conspectus
- Biochemie. Molekulární biologie. Biofyzika
- NML Fields
- chemie, klinická chemie
- biologie
Využití molekulárně genetických metod pro analýzu biologických stop je „zlatým standardem“ při individuální identifikaci jejich původců. Bez možnosti porovnat genetický profil stopy s profilem kontrolního vzorku jejího potencionálního původce však tato analýza neposkytuje vodítka pro další směr vyšetřování. Zajímavým údajem pro vyšetřovatele by mohl být například věk původce stopy. V přehledu jsou diskutovány současné metodické možnosti a jejich výstupy směřující k určení tohoto údaje.
Application of molecular genetic methods during the examination of biological traces is irreplaceable for individual identification of their originators. However, this analysis does not provide any clues for further investigation without the possibility to compare the genetic profile of the examined trace with the profile of its potential originator. The age of a searched person represents an important entry for investigators. In this review, the recent methodical molecular genetic approaches are discussed with regards to their practical outputs leading to the estimation of biological age of an individual. The length of telomeric sequences and their attritions correlating with increasing age seemed to be very promising marker if they have been examined using Southern blot analysis. This method is not suitable for forensic casework due to the need of high amounts of DNA input. Recent methods based on quantitative polymerase chain reaction (qPCR) are applicable on samples with minimal DNA concentrations but they provide inconclusive results with regard to the age estimation based on the length of telomeres. Therefore novel methodical approaches were developed. Application of methods based on the examination of deletions in mitochondrial DNA, on the presence of transcripts of gamma hemoglobins or on the quantification of byproducts of somatic rearrangements of genes for T-cell receptors is restricted to special types of biological traces. The age dependent methylation of specific nucleotides in selected gene sequences seems to be the only promising universal marker.
- Keywords
- stanovení věku,
- MeSH
- Gene Deletion MeSH
- Humans MeSH
- DNA Methylation * MeSH
- DNA, Mitochondrial * analysis MeSH
- Molecular Biology methods MeSH
- Polymerase Chain Reaction * methods MeSH
- Forensic Anthropology * methods MeSH
- Forensic Genetics MeSH
- Telomere MeSH
- Age Determination by Skeleton * MeSH
- Telomere Shortening MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
Článek přehledově pojednává o významu molekulární diagnostiky chronické myeloidní leukemie, molekulárního monitorování účinnosti léčby, zbytkové nemoci a rezistence na terapii a role Národní referenční laboratoře ÚHKT v těchto oblastech vyšetřování. Kvalitativní detekce založená na multiplexové reverzně transkriptázové PCR potvrzuje přítomnost mRNA fúzního genu BCR-ABL ve vyšetřovaném vzorku, a tedy diagnózu chronické myeloidní leukemie. Charakterizace typu přestavby je rovněž významná pro následující monitorování nemoci, které probíhá na úrovni kvantifikace transkriptů BCR-ABL. Kvantitativní stanovování BCR-ABL transkriptů probíhá v pravidelných intervalech a umožňuje sledovat kinetiku nemoci v průběhu léčby na molekulární úrovni. Milníkem úspěšného managementu léčby chronické myeloidní leukemie inhibitory tyrozinových kináz je dosažení velké molekulární odpovědi, která odpovídá úrovni BCR-ABL transkriptů ≤ 0,1 %IS. Tudíž zcela zásadní je sjednocování kvantifikace BCR-ABL mezi laboratořemi, které probíhá na národní a mezinárodní úrovni. Celosvětově je v současné době intenzivně řešena otázka definice a monitorování kompletní molekulární remise, resp. míry hluboké molekulární odpovědi, jelikož s nástupem nové generace léčiv se vyšší procento pacientů dostává do molekulární remise. Nejvíce probádaným a jasně prokázaným mechanizmem rezistence na léčbu TKI jsou mutace kinázové domény v BCR-ABL. Sangerovo sekvenování je zlatým standardem pro rutinní detekci a charakterizace BCR-ABL mutací. V současnosti se do popředí zájmu dostává sekvenování 2. generace, od kterého se očekává možné objasnění vzniku mutací a klonálního vývoje pod tlakem TK inhibitorů a případné dopady této extrémně citlivé technologie na prognózu.
This overview discusses an importance of molecular diagnostics of chronic myeloid leukemia, molecular monitoring of treatment efficacy, residual disease and resistance to therapy and the role of the National reference laboratory ÚHKT in these issues. The qualitative detection based on the multiplex reverse transcriptase PCR confirms the presence of mRNA of the fusion gene BCR-ABL in the examined sample, thus a diagnosis of chronic myeloid leukemia. Characterization of the type of BCR-ABL rearrangement is also important for the subsequent monitoring based on the quantification of BCR-ABL transcripts. The quantitative determination of BCR-ABL transcripts at regular intervals monitors the kinetics of the disease during the treatment at the molecular level. A milestone in the successful management of chronic myeloid leukemia by tyrosine kinase inhibitors is the achievement of the major molecular response, which corresponds to the levels of BCR-ABL transcripts ≤ 0.1%IS. Thus, a fundamental aim is national and international harmonization of BCR-ABL transcripts quantification among laboratories. Currently, definition and monitoring of the complete molecular remission or deep molecular response rates is currently intensively studied worldwide, because of a higher number of patients achieving complete molecular response under 2nd generation TKI. The most studied and proved mechanism of the resistance to TKI therapy are mutations in the kinase domain of BCR-ABL. Sanger sequencing is the gold standard for the routine detection and characterization of BCR-ABL mutations. At present, mutation studies starting with using of the second-generation sequencing, which is expected to help in understanding of mutation development and clonal evolution under the pressure of TK inhibitors and the potential impact of this extremely sensitive technology for the prognosis.
- Keywords
- Sangerovo sekvenování, sekvenování 2. generace, Sangerovo sekvenování, rezistence, real-time RT-PCR, multiplex RT-PCR, kvantifikace, inhibitory tyrozinových kináz, CMR, BCR-ABL,
- MeSH
- Fusion Proteins, bcr-abl genetics blood MeSH
- Time Factors MeSH
- Drug Resistance, Neoplasm genetics MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive * diagnosis drug therapy genetics MeSH
- Transcription, Genetic MeSH
- Protein Kinase Inhibitors * therapeutic use MeSH
- Laboratories standards MeSH
- Humans MeSH
- RNA, Messenger genetics MeSH
- Mutation genetics MeSH
- Biomarkers, Tumor genetics MeSH
- Reverse Transcriptase Polymerase Chain Reaction methods standards MeSH
- Reference Standards MeSH
- Gene Expression Regulation, Leukemic MeSH
- Quality Control MeSH
- Sequence Analysis methods MeSH
- Protein-Tyrosine Kinases antagonists & inhibitors MeSH
- Check Tag
- Humans MeSH
- Publication type
- Review MeSH
Východisko. Kvantifikace fluorescenčně značených PCR produktů na kapilární elektroforéze (QF PCR) má své limity především v citlivějších analýzách, ve kterých je potřebné zachytit minoritní buněčnou linii a rozpoznat malé změny v závislosti na čase. V těchto případech může být chyba měření a reprodukovatelnost výsledků velmi ovlivněna hlavně lidským faktorem a efektivitou PCR. Hlavním cílem studie bylo posoudit a optimalizovat kvantitativní možnosti inovované QF PCR s přímou návazností na kvantifikaci Y sekvencí u gonozomálních mozaik. Metody a výsledky. Arteficiálně vytvořené Y/X DNA mozaiky byly testovány a kvantifikovány inovovanou QF PCR, která nahrazuje a rozšiřuje real-time PCR. Na základě porovnání intenzity fluorescence PCR produktů po jednotlivých cyklech byly sestrojeny grafy nárůstu fluorescence pro různá ředění. Analýzou podílu signálu vnitřní kontroly a příslušné mozaiky byla sestrojena kalibrační křivka pro kvantifikaci Y sekvencí. Pro výpočet vzácných mozaik byl sestaven empirický vzorec. Závěry. Rozšíření QF PCR o manuální real-time PCR eliminuje meze QF PCR a zpřesňuje kvantifikační analýzy založené na PCR. Novelizovaný DNA diagnostický přístup – IQF PCR, který se vyznačuje vysokou citlivostí a přesností, umožňuje významný posun v analýze gonozomálních Y/X mozaik.
Background. Quantification of fluorescence labelled PCR products on capillary electrophoresis (QF PCR) has limits primarily in the possibility of more sensitive analyses to detect minority cell lines and small time related variations. PCR efficiency and human factor affect measuring error and reproducibility of results in these cases. The aim of this work was to assess and optimise of innovated (I)QF PCR in quantification of Y sequences in gonosomal mosaics. Methods and Results. Artificially prepared Y/X mosaics were tested and quantified by IQF PCR, which replaces real-time PCR. Comparison of relative fluorescence to PCR cycles in different Y/X dilutions was plotted on the graphs. Calibration curve for Y sequences quantification was set by the analyses of ratio of Y/X fluorescent signals. An empirical formula was created for the rare mosaic calculation. Conclusions. QF PCR refined by manual real-time PCR eliminates limits of QF PCR and specifies quantitative analyses based on PCR. The outstanding feature of IQF PCR is its high sensitivity and accuracy in quantification of Y/X gonosomal mosaics.
Assessment of clonality, marker identification and measurement of minimal residual disease (MRD) of immunoglobulin (IG) and T cell receptor (TR) gene rearrangements in lymphoid neoplasms using next-generation sequencing (NGS) is currently under intensive development for use in clinical diagnostics. So far, however, there is a lack of suitable quality control (QC) options with regard to standardisation and quality metrics to ensure robust clinical application of such approaches. The EuroClonality-NGS Working Group has therefore established two types of QCs to accompany the NGS-based IG/TR assays. First, a central polytarget QC (cPT-QC) is used to monitor the primer performance of each of the EuroClonality multiplex NGS assays; second, a standardised human cell line-based DNA control is spiked into each patient DNA sample to work as a central in-tube QC and calibrator for MRD quantification (cIT-QC). Having integrated those two reference standards in the ARResT/Interrogate bioinformatic platform, EuroClonality-NGS provides a complete protocol for standardised IG/TR gene rearrangement analysis by NGS with high reproducibility, accuracy and precision for valid marker identification and quantification in diagnostics of lymphoid malignancies.
- MeSH
- Genetic Markers genetics MeSH
- Gene Rearrangement genetics MeSH
- Immunoglobulins genetics MeSH
- Humans MeSH
- Receptors, Antigen, T-Cell genetics MeSH
- Reproducibility of Results MeSH
- Neoplasm, Residual genetics MeSH
- Quality Control MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Úvod: Fúzní transkript BCR-ABL, prokazatelný v periferní krvi nebo vzorku kostní dřeně, je specifickým molekulárním markerem chronické myeloidní leukémie a akutní lymfoblastické leukémie s nálezem Filadelfského chromozomu. Moderní kvantitativní molekulárně biologická vyšetření jsou založená na technologii real-time PCR a fluorescenčních sondách komplementárních vůči vyšetřovanému DNA/cDNA templátu. Současný trend v laboratorní medicíně a aplikované molekulární biologii podporuje snahu o externí hodnocení kvality a přenositelnost výsledků kvantitativních PCR analýz. Cílem studie je porovnat diagnostický význam dvou analytických systémů určených pro kvantifikaci BCR-ABL s ohledem na současná doporučení programu Europe Against Cancer Program (EAC). Materiál a metody: Celkem bylo analyzováno 148 vzorků (143 vzorky periferní krve a 5 aspirátů kostní dřeně) získaných od 80 dospělých jedinců. Vzorky byly vyšetřeny paralelně dvěma kvantitativními postupy s normalizací na příslušný house-keeping gen. První postup byl založen na reverzní transkripci RNA pomocí enzymu Superscript III (Invitrogen) a kvantifikaci BCR-ABL soupravou M-bcr FusionQuant Kit (Ipsogen). Druhý postup používal soupravu LightCycler t(9;22) Quantifi cation Kit (Roche). Výsledky: Kalibrační rovnice pro BCR-ABL gen (FusionQuant) byla: CT = -3,54 . log(conc BCR-ABL) + 42,33; automatický threshold = 0,06, korelační koeficient r = -1,00, reakční účinnost = 92 %. Souprava firmy Roche nepoužívá pro kvantifikaci BCR-ABL genu kalibrační proces. Kalibrační rovnice pro ABL gen (FusionQuant) byla CT = -3,53 . log(conc ABL) + 40,91, threshold pro ABL = 0,08, r = -1,00, reakční účinnost = 91 %. Kalibrační rovnice pro G6PDH gen (Roche) byla CT = -3,2 . log(conc G6PDH) + 30,9, r = -1,00, reakční účinnost = 100 %. Minimální koncentrace BCR-ABL stanovitelná soupravou FusionQuant byla 10 kopií v 5 µl použité cDNA. Nejnižší relativní koncentrace BCR-ABL stanovitelná soupravou Roche byla 0,001 %. Experimentální data ukázala lineární závislost mezi hodnotami relativní koncentrace BCR-ABL dosaženými oběma metodami s korelačním koeficientem r = 0,77, p < 0,001. Závěr: Mezi principiální rozdíly obou testovaných souprav patří výběr house-keeping genu použitého pro normalizaci koncentrace BCR-ABL. V souladu s doporučeními programu Europe Against Cancer jsme pro rutinní vyšetření v naší laboratoři zvolili soupravu FusionQuant s normalizací na ABL gen. Klíčová slova: BCR-ABL, kvantifikace, real-time PCR, house-keeping gen, ABL gen, EQA.
Objective: A BCR-ABL fusion transcript found in peripheral blood or bone marrow is a specific molecular marker of chronic myeloid leukemia and Philadelphia chromosome – positive acute lymphoblastic leukemia. Modern quantitative analyses in molecular biology are based on real-time PCR technology and fluorescent probes targeted to a complementary part of DNA/cDNA templates. A current trend in laboratory medicine and applied molecular biology is to support proficiency testing and transferability of results of quantitative PCR analyses. The goal of the study is to compare the diagnostic impact of two used systems for BCR-ABL quantification with respect to recommendations of the Europe Against Cancer Program (EAC) unifying the used BCR-ABL methodology. Material and Methods: A total of 143 peripheral blood specimens and 5 bone marrow aspirates from 80 adult subjects were analysed. Two quantitative procedures were simultaneously examined. Procedure I was based on Superscript III reverse transcription (Invitrogen) and M-bcr FusionQuant Kit (Ipsogen) for relative quantification of BCR-ABL. In procedure II we used LightCycler t(9;22) Quantification Kit (Roche). Results: The calibration curve for BCR-ABL gene (FusionQuant) was: CT = -3.54 . log(conc BCR-ABL) + 42.33; automatic threshold = 0.06, correlation coefficient (r) = -1.00, reaction efficiency = 92%. The Roche kit does not use any calibration process for BCR-ABL. The calibration curve for ABL gene (FusionQuant) was CT = -3.53 . log(conc ABL) + 40.91, ABL threshold = 0.08, r = -1.00, reaction efficiency = 91%. The calibration curve for G6PDH control gene (Roche) was CT = -3.2 . log(conc G6PDH) + 30.9, r = -1.00, reaction efficiency = 100%. The limit of quantification for BCR-ABL (FusionQuant) was 10 copies in 5 µl of the used cDNA. The lowest relative concentration of BCR-ABL detectable by the Roche assay was 0.001 %. The experimental data showed a close linear association in relative quantity of BCR-ABL received by the examined assays with r = 0.77, P < 0.001. Conclusions: The principal difference between the tested procedures is the house-keeping gene used for normalization of BCR-ABL quantity. In agreement with the Europe Against Cancer strategy we have selected ABL gene as a normalization gene for our lab.
- MeSH
- Precursor Cell Lymphoblastic Leukemia-Lymphoma blood MeSH
- Fusion Proteins, bcr-abl blood MeSH
- Biomarkers blood MeSH
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive MeSH
- Philadelphia Chromosome MeSH
- Genes, abl genetics MeSH
- Clinical Laboratory Techniques MeSH
- Humans MeSH
- Molecular Biology methods standards trends MeSH
- Polymerase Chain Reaction methods utilization MeSH
- Quality Control MeSH
- Check Tag
- Humans MeSH
Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
- MeSH
- Algorithms MeSH
- Genes, cdc MeSH
- Financing, Organized MeSH
- Transcription, Genetic MeSH
- Gene Regulatory Networks MeSH
- Linear Models MeSH
- Least-Squares Analysis MeSH
- Models, Genetic MeSH
- Gene Expression Regulation, Fungal MeSH
- Saccharomyces cerevisiae genetics MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Gene Expression Profiling MeSH
- Transcription Factors analysis MeSH
- Computational Biology MeSH
- Publication type
- Evaluation Study MeSH
- Comparative Study MeSH
Next generation sequencing (NGS) platforms are replacing traditional molecular biology protocols like cloning and Sanger sequencing. However, accuracy of NGS platforms has rarely been measured when quantifying relative frequencies of genotypes or taxa within populations. Here we developed a new bioinformatic pipeline (QRS) that pools similar sequence variants and estimates their frequencies in NGS data sets from populations or communities. We tested whether the estimated frequency of representative sequences, generated by 454 amplicon sequencing, differs significantly from that obtained by Sanger sequencing of cloned PCR products. This was performed by analysing sequence variation of the highly variable first internal transcribed spacer (ITS1) of the ichthyosporean Caullerya mesnili, a microparasite of cladocerans of the genus Daphnia. This analysis also serves as a case example of the usage of this pipeline to study within-population variation. Additionally, a public Illumina data set was used to validate the pipeline on community-level data. Overall, there was a good correspondence in absolute frequencies of C. mesnili ITS1 sequences obtained from Sanger and 454 platforms. Furthermore, analyses of molecular variance (amova) revealed that population structure of C. mesnili differs across lakes and years independently of the sequencing platform. Our results support not only the usefulness of amplicon sequencing data for studies of within-population structure but also the successful application of the QRS pipeline on Illumina-generated data. The QRS pipeline is freely available together with its documentation under GNU Public Licence version 3 at http://code.google.com/p/quantification-representative-sequences.
- MeSH
- Daphnia parasitology MeSH
- Genetic Variation * MeSH
- Mesomycetozoea classification genetics MeSH
- DNA, Ribosomal Spacer chemistry genetics MeSH
- Sequence Analysis, DNA * MeSH
- Software MeSH
- Computational Biology methods MeSH
- High-Throughput Nucleotide Sequencing MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
Východiská: AML je agresívne, fenotypovo a geneticky heterogénne klonálne ochorenie krvotvorných progenitorových buniek s veľkou molekulárnou variabilitou. Nová klasifikácia WHO 2008 delí de novo AML podľa cytogenetických a molekulárnych prognostických a prediktívnych markerov. V poslednej dobe je stále väčšia možnosť určiť podskupinu rizikových pacientov so zlou prognózou medzi tými s normálnym karyotypom. Cieľom našej štúdie bolo zistiť prognosticky významné molekulárne markery u detí s AML na stratifikáciu pacientov s normálnym karyotypom a na sledovanie ochorenia podľa genetického nálezu. Súbor pacientov a metódy: V rokoch 2008–2010 sme analyzovali vzorky kostnej drene a periférnej krvi u 20 detí s de novo AML konvenčnou cytogenetickou analýzou, fluorescenčnou in situ hybridizáciou a molekulovou analýzou. Molekulárna analýza bola vykonaná na úrovni cDNA restrikčnou analýzou PCR produktov (FLT3-TKD), konvenčnou PCR (MLL-PTD, NPM1mut, FLT3-ITD) a kvantifikačnou RT-PCR (expresia fúznych génov, génov BAALC a WT1). Výsledky: Vzorky 20 detí s AML boli analyzované využitím konvenčnej cytogenetiky, FISH a molekulovo-genetickými metódami. Abnormálny karyotyp bol zistený u 13 pacientov (65 %). Ďalšia analýza ukázala FLT3-ITD v 5/20 (25 %), FLT3-TKD v 3/20 (15 %), NPM1mut 2/20 (10 %) a MLL-PTD v 1/20 (5 %), nadmernej expresie WT1 génu v 15/20 (75 %) a nadmernej expresie BAALC v 13/20 (65 %) pacientov. Záver: Široký cytogenetický a molekulárny skríning pomohol nájsť aspoň jeden genetický marker u všetkých 20 pacientov pre ďalšie sledovanie a stratifikáciu rizika detí s AML. Na progresiu ochorenia umreli 4/20 (20 %) detí.
Backgrounds: AML is an aggressive, phenotypically and genetically heterogenous clonal disease of hematopoietic progenitor cells with a great molecular variability. New WHO classification 2008 divides de novo AML according to cytogenetic and molecular prognostic and predictive markers. Recently, it is increasingly possible to identify a subgroup of poorer prognosis patients among those with normal karyotype AML. The aim of our study was to identify prognostically important molecular markers in children with AML, to stratify patients with normal karyotype and to monitor the disease according the genetic findings. Material and Methods: In 2008–2010, we analyzed bone marrow and peripheral blood samples of 20 children with de novo AML by conventional cytogenetic analysis, fluorescence in situ hybridisation and molecular diagnostics. The molecular analysis was performed on the cDNA level, with the restriction analysis of PCR products (FLT3-TKD), conventional PCR (MLL-PTD, NPM1mut, FLT3- ITD) and quantification RT-PCR method (expression of fusion transcripts, BAALC, WT1). Results: Samples from 20 children with AML were analyzed using the conventional cytogenetics, FISH and molecular methods. Abnormal karyotype was identified in 13 patients (65%). Further analysis revealed FLT3-ITD in 5/20 (25%), FLT3-TKD in 3/20 (15%), NPM1mut in 2/20 (10%) and MLL-PTD in 1/20 (5%), overexpression of WT1 gene in 15/20 (75%) and overexpression of BAALC in 13/20 (65%) patients. Conclusion: Wide cytogenetic and molecular screening helped to find at least one genetic marker in all 20 patients for later follow-up and risk stratification. 4/20 (20%) patients died of the disease progression.
- MeSH
- Leukemia, Myeloid, Acute diagnosis genetics blood MeSH
- Cytogenetic Analysis methods utilization MeSH
- Child MeSH
- Gene Expression genetics MeSH
- Genetic Markers genetics MeSH
- In Situ Hybridization, Fluorescence methods utilization MeSH
- Nuclear Proteins genetics isolation & purification MeSH
- Humans MeSH
- Mutation genetics MeSH
- Neoplasm Proteins genetics isolation & purification MeSH
- Polymerase Chain Reaction methods utilization MeSH
- WT1 Proteins genetics isolation & purification MeSH
- Myeloid-Lymphoid Leukemia Protein genetics isolation & purification MeSH
- Statistics as Topic MeSH
- fms-Like Tyrosine Kinase 3 genetics isolation & purification MeSH
- Check Tag
- Child MeSH
- Humans MeSH