Extramedullary disease (EMM) represents a rare, aggressive and mostly resistant phenotype of multiple myeloma (MM). EMM is frequently associated with high-risk cytogenetics, but their complex genomic architecture is largely unexplored. We used whole-genome optical mapping (Saphyr, Bionano Genomics) to analyse the genomic architecture of CD138+ cells isolated from bone-marrow aspirates from an unselected cohort of newly diagnosed patients with EMM (n = 4) and intramedullary MM (n = 7). Large intrachromosomal rearrangements (> 5 Mbp) within chromosome 1 were detected in all EMM samples. These rearrangements, predominantly deletions with/without inversions, encompassed hundreds of genes and led to changes in the gene copy number on large regions of chromosome 1. Compared with intramedullary MM, EMM was characterised by more deletions (size range of 500 bp-50 kbp) and fewer interchromosomal translocations, and two EMM samples had copy number loss in the 17p13 region. Widespread genomic heterogeneity and novel aberrations in the high-risk IGH/IGK/IGL, 8q24 and 13q14 regions were detected in individual patients but were not specific to EMM/MM. Our pilot study revealed an association of chromosome 1 abnormalities in bone marrow myeloma cells with extramedullary progression. Optical mapping showed the potential for refining the complex genomic architecture in MM and its phenotypes.
- MeSH
- Bone Marrow Cells pathology MeSH
- Genome-Wide Association Study methods MeSH
- Chromosome Aberrations * MeSH
- Cytogenetic Analysis methods MeSH
- Cohort Studies MeSH
- Bone Marrow diagnostic imaging metabolism pathology MeSH
- Middle Aged MeSH
- Humans MeSH
- Chromosomes, Human, Pair 1 * genetics MeSH
- Multiple Myeloma genetics pathology MeSH
- Pilot Projects MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged, 80 and over MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
Fluorescence in situ hybridization (FISH) allows identification of particular chromosomes and their rearrangements. Using FISH with signal enhancement via antibody amplification and enzymatically catalysed reporter deposition, we evaluated applicability of universal cytogenetic markers, namely 18S and 5S rDNA genes, U1 and U2 snRNA genes, and histone H3 genes, in the study of the karyotype evolution in moths and butterflies. Major rDNA underwent rather erratic evolution, which does not always reflect chromosomal changes. In contrast, the hybridization pattern of histone H3 genes was well conserved, reflecting the stable organisation of lepidopteran genomes. Unlike 5S rDNA and U1 and U2 snRNA genes which we failed to detect, except for 5S rDNA in a few representatives of early diverging lepidopteran lineages. To explain the negative FISH results, we used quantitative PCR and Southern hybridization to estimate the copy number and organization of the studied genes in selected species. The results suggested that their detection was hampered by long spacers between the genes and/or their scattered distribution. Our results question homology of 5S rDNA and U1 and U2 snRNA loci in comparative studies. We recommend the use of histone H3 in studies of karyotype evolution.
- MeSH
- Cytogenetic Analysis methods MeSH
- Genome MeSH
- In Situ Hybridization, Fluorescence MeSH
- Chromosome Mapping MeSH
- Evolution, Molecular * MeSH
- Butterflies genetics MeSH
- Moths genetics MeSH
- DNA, Ribosomal genetics MeSH
- RNA, Small Nuclear genetics MeSH
- RNA, Ribosomal, 18S genetics MeSH
- RNA, Ribosomal, 5S genetics MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Bacteremia diagnosis MeSH
- Chorioamnionitis microbiology MeSH
- Cytogenetic Analysis methods instrumentation MeSH
- Molecular Diagnostic Techniques classification methods MeSH
- Humans MeSH
- Microbiological Techniques methods MeSH
- Specimen Handling MeSH
- Amniotic Fluid * microbiology MeSH
- Polymerase Chain Reaction methods instrumentation MeSH
- Sensitivity and Specificity MeSH
- Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization methods instrumentation MeSH
- Streptococcus agalactiae isolation & purification MeSH
- Pregnancy MeSH
- Check Tag
- Humans MeSH
- Pregnancy MeSH
- Female MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
The application of nanomaterials has been rapidly increasing during recent years. Inhalation exposure to nanoparticles (NP) may result in negative toxic effects but there is a critical lack of human studies, especially those related to possible DNA alterations. We analyzed pre-shift and post-shift a group of nanocomposite researchers with a long-term working background (17.8 ± 10.0 years) and matched controls. The study group consisted of 73.2% males and 26.8% females. Aerosol exposure monitoring during a working shift (involving welding, smelting, machining) to assess the differences in exposure to particulate matter (PM) including nanosized fractions <25-100 nm, and their chemical analysis, was carried out. A micronucleus assay using Human Pan Centromeric probes, was applied to distinguish between the frequency of centromere positive (CEN+) and centromere negative (CEN-) micronuclei (MN) in the binucleated cells. This approach allowed recognition of the types of chromosomal damage: losses and breaks. The monitoring data revealed differences in the exposure to NP related to individual working processes, and in the chemical composition of nanofraction. The cytogenetic results of this pilot study demonstrated a lack of effect of long-term (years) exposure to NP (total frequency of MN, P = 0.743), although this exposure may be responsible for DNA damage pattern changes (12% increase of chromosomal breaks-clastogenic effect). Moreover, short-term (daily shift) exposure could be a reason for the increase of chromosomal breaks in a subgroup of researchers involved in welding and smelting processes (clastogenic effect, P = 0.037). The gender and/or gender ratio of the study participants was also an important factor for the interpretation of the results. As this type of human study is unique, further research is needed to understand the effects of long-term and short-term exposure to NP.
- MeSH
- Cytogenetic Analysis * methods MeSH
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Micronucleus Tests methods MeSH
- Young Adult MeSH
- Mutagens adverse effects MeSH
- Nanoparticles * MeSH
- Particulate Matter * adverse effects MeSH
- Pilot Projects MeSH
- Occupational Exposure * adverse effects MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Young Adult MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Východiska: Práce se zabývá metodami klasické a molekulární cytogenetiky vhodnými k vyšetřování cytogenetických změn u zdravotníků i jiných profesních skupin exponovaných karcinogenům. Ve zdravotnictví je biomonitoring těchto osob spolu se sledováním a hodnocením expozice chemickým látkám, cytostatikům nebo záření s karcinogenním potenciálem základem pro nastavení funkčních nápravných opatření a současně prevencí vzniku zhoubných nádorů jako nemoci z povolání. Cíl: V přehledu jsou prezentovány principy, výhody i limity klasických cytogenetických i moderních molekulárně cytogenetických metod. Z první skupiny se jedná zejména o konvenční cytogenetickou analýzu chromozomálních aberací periferních lymfocytů osob exponovaných chemickým karcinogenům nebo vyšetřování sesterských chromatid a mikrojader po expozici ionizujícímu záření. Z novějších metod jsou uvedeny původní radioaktivní, později fluorescenční in situ hybridizace, její barevné varianty, komparativní genová hybridizace, spektrální karyotypizace, z nejnovějších mikročipové metody. Závěr: Molekulárně cytogenetické metody umožňují zpřesnění metod používaných v biomonitoringu chemických látek i záření. Jejich přínosem je vyšší rychlost, automatizace některých procesů, vysoká citlivost, zaměření na stabilní genetické změny schopné vyvolat proces karcinogeneze a také možnost stanovení odchylek i v nedělících se buňkách. Jejich nevýhodou jsou zatím chybějící analýzy většího počtu dat z preventivních vyšetření, dosud nestanovené normy či limitní hodnoty pro exponované jednotlivce i pracovní kolektivy, stejně jako vyšší cena vyšetření.
Background: People in the health professions and other occupations are frequently exposed to carcinogens, including chemicals, cytostatic agents, and ionizing radiation with carcinogenic potential. These individuals require monitoring of their exposure, as well as biomonitoring for cytogenetic alterations. Classical and molecular cytogenetic methods can establish functional remedial measures, while preventing the emergence of malignant tumors as an occupational disease. Purpose: This article presents the main principles, advantages, and limitations of classical cytogenetic and modern molecular cytogenetic methods. These include conventional cytogenetic analysis of chromosomal aberrations in peripheral lymphocytes of individuals exposed to chemical carcinogens and examination of sister chromatids and micronuclei after exposure to ionizing radiation. More recent methods include radioactive and fluorescence in situ hybridization, colour variants of the latter, comparative gene hybridization, spectral karyotyping, and the latest microchip methods. Conclusion: Molecular cytogenetic methods make possible the refinement of methods used in the biomonitoring of chemicals and radiation. Their benefits include higher speed, automation of some processes, high sensitivity, focus on stable genetic changes capable of triggering the carcinogenesis process, and the possibility of determining deviations in non-dividing cells. Their disadvantages to date include lack of analysis of large numbers of individuals undergoing preventive examinations, undetermined norms or limit values for exposed individuals and work teams, and higher costs of examination.
- Keywords
- pracovní prostředí,
- MeSH
- Chromosome Aberrations MeSH
- Cytogenetic Analysis * methods MeSH
- In Situ Hybridization, Fluorescence methods MeSH
- Carcinogens MeSH
- Humans MeSH
- Workplace MeSH
- Environmental Exposure MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
The recent advances in DNA sequencing technology are enabling a rapid increase in the number of genomes being sequenced. However, many fundamental questions in genome biology remain unanswered, because sequence data alone is unable to provide insight into how the genome is organised into chromosomes, the position and interaction of those chromosomes in the cell, and how chromosomes and their interactions with each other change in response to environmental stimuli or over time. The intimate relationship between DNA sequence and chromosome structure and function highlights the need to integrate genomic and cytogenetic data to more comprehensively understand the role genome architecture plays in genome plasticity. We propose adoption of the term 'chromosomics' as an approach encompassing genome sequencing, cytogenetics and cell biology, and present examples of where chromosomics has already led to novel discoveries, such as the sex-determining gene in eutherian mammals. More importantly, we look to the future and the questions that could be answered as we enter into the chromosomics revolution, such as the role of chromosome rearrangements in speciation and the role more rapidly evolving regions of the genome, like centromeres, play in genome plasticity. However, for chromosomics to reach its full potential, we need to address several challenges, particularly the training of a new generation of cytogeneticists, and the commitment to a closer union among the research areas of genomics, cytogenetics, cell biology and bioinformatics. Overcoming these challenges will lead to ground-breaking discoveries in understanding genome evolution and function.
- MeSH
- Chromosomes genetics MeSH
- Cytogenetic Analysis methods MeSH
- Genome, Human * MeSH
- Genomics methods MeSH
- Humans MeSH
- Evolution, Molecular MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
U nemocných s hematologickými malignitami je jedním z nejdůležitějších nálezů karyotyp buněk kostní dřeně v době stanovení diagnózy. Detekce klonálních chromosomových aberací v diagnostických vzorcích nejen potvrzuje neoplastický nebo premaligní proces, ale také poskytuje diagnostické a prognostické informace, které jsou důležité pro přesnou klasifikaci onemocnění a výběr vhodné terapie. Analýza karyoytypu v průběhu onemocnění slouží rovněž k monitorování úspěšnosti léčby. Tyto skutečnosti se odrážejí i v revidované klasifikaci WHO, v níž jsou pacienti často řazeni do různých diagnostických subtypů právě na základě nálezu specifických chromosomových a/nebo genetických změn. V posledních letech dále vzrůstá počet moderních léčebných přístupů, jež přímo či nepřímo cílí na genetické aberace přítomné v nádorových buňkách. Cytogenetická analýza doplněná o výsledky molekulárně cytogenetických metod tak i přes velký rozvoj nových sekvenačních technologií v posledních letech stále zůstává velmi důležitou součástí diagnostiky hematologických malignit.
In patients with hematological malignancies one of the most substantial findings is the karyotype of bone marrow cells at the time of diagnosis. The detection of clonal chromosome aberrations in diagnostic samples not only confirms a neoplastic or premalignant process but also provides important diagnostic and prognostic information essential for precise disease classification and choice of suitable therapy. Karyotype analysis during the disease course also allows monitoring of the treatment success reflected as well in the revised WHO classification where patients are often classified into the different diagnostic subtypes based on the finding of specific chromosome and/or genetic changes. Recently, also increases the number of advanced treatment approaches that directly or indirectly target the genetic aberrations present in tumor cells. Despite the large development of new sequencing technologies in recent years, cytogenetic analysis supplemented by the molecular cytogenetic methods still remains a very important part of diagnostics of hematological malignancies.
- MeSH
- Chromosome Aberrations MeSH
- Cytogenetic Analysis * methods MeSH
- Genetic Heterogeneity MeSH
- Hematologic Neoplasms * diagnostic imaging genetics MeSH
- Karyotype MeSH
- Humans MeSH
- Whole Genome Sequencing methods MeSH
- Check Tag
- Humans MeSH
- Publication type
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH