-
Je něco špatně v tomto záznamu ?
Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae
Vu TT, Vohradsky J.
Jazyk angličtina Země Velká Británie
Typ dokumentu srovnávací studie, hodnotící studie
NLK
Directory of Open Access Journals
od 2005
Free Medical Journals
od 1996
PubMed Central
od 1974
Europe PubMed Central
od 1974
Open Access Digital Library
od 1996-01-01 do 2030-12-31
Open Access Digital Library
od 1974-01-01
Open Access Digital Library
od 1996-01-01
Open Access Digital Library
od 1996-01-01
Medline Complete (EBSCOhost)
od 1996-01-01
Oxford Journals Open Access Collection
od 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
od 1974
- MeSH
- algoritmy MeSH
- CDC geny MeSH
- financování organizované MeSH
- genetická transkripce MeSH
- genové regulační sítě MeSH
- lineární modely MeSH
- metoda nejmenších čtverců MeSH
- modely genetické MeSH
- regulace genové exprese u hub MeSH
- Saccharomyces cerevisiae genetika MeSH
- sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů MeSH
- stanovení celkové genové exprese MeSH
- transkripční faktory analýza MeSH
- výpočetní biologie MeSH
- Publikační typ
- hodnotící studie MeSH
- srovnávací studie MeSH
Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc09004134
- 003
- CZ-PrNML
- 005
- 20111210153745.0
- 008
- 091127s2007 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vu, Tra Thi. $7 _AN041316
- 245 10
- $a Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae / $c Vu TT, Vohradsky J.
- 314 __
- $a Laboratory of Bioinformatics, Institute of Microbiology, ASCR, Videnska 1083, 14220 Prague, Czech Republic
- 520 9_
- $a Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a regulace genové exprese u hub $7 D015966
- 650 _2
- $a genové regulační sítě $7 D053263
- 650 _2
- $a CDC geny $7 D018816
- 650 _2
- $a metoda nejmenších čtverců $7 D016018
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $7 D020411
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 _2
- $a transkripční faktory $x analýza $7 D014157
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a hodnotící studie $7 D023362
- 700 1_
- $a Vohradský, Jiří, $d 1956- $7 xx0048422
- 773 0_
- $w MED00003554 $t Nucleic acids research $g Roč. 35, č. 1 (2007), s. 279-287 $x 0305-1048
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20091123115031 $b ABA008
- 991 __
- $a 20091201163716 $b ABA008
- 999 __
- $a ok $b bmc $g 699952 $s 562364
- BAS __
- $a 3
- BMC __
- $a 2007 $b 35 $c 1 $d 279-287 $i 0305-1048 $m Nucleic acids research $x MED00003554
- LZP __
- $a 2009-B3/dkme