-
Something wrong with this record ?
Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae
Vu TT, Vohradsky J.
Language English Country Great Britain
Document type Comparative Study, Evaluation Study
NLK
Directory of Open Access Journals
from 2005
Free Medical Journals
from 1996
PubMed Central
from 1974
Europe PubMed Central
from 1974
Open Access Digital Library
from 1996-01-01 to 2030-12-31
Open Access Digital Library
from 1974-01-01
Open Access Digital Library
from 1996-01-01
Open Access Digital Library
from 1996-01-01
Medline Complete (EBSCOhost)
from 1996-01-01
Oxford Journals Open Access Collection
from 1996-01-01
ROAD: Directory of Open Access Scholarly Resources
from 1974
- MeSH
- Algorithms MeSH
- Genes, cdc MeSH
- Financing, Organized MeSH
- Transcription, Genetic MeSH
- Gene Regulatory Networks MeSH
- Linear Models MeSH
- Least-Squares Analysis MeSH
- Models, Genetic MeSH
- Gene Expression Regulation, Fungal MeSH
- Saccharomyces cerevisiae genetics MeSH
- Oligonucleotide Array Sequence Analysis MeSH
- Gene Expression Profiling MeSH
- Transcription Factors analysis MeSH
- Computational Biology MeSH
- Publication type
- Evaluation Study MeSH
- Comparative Study MeSH
Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
- 000
- 00000naa 2200000 a 4500
- 001
- bmc09004134
- 003
- CZ-PrNML
- 005
- 20111210153745.0
- 008
- 091127s2007 xxk e eng||
- 009
- AR
- 040 __
- $a ABA008 $b cze $c ABA008 $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxk
- 100 1_
- $a Vu, Tra Thi. $7 _AN041316
- 245 10
- $a Nonlinear differential equation model for quantification of transcriptional regulation applied to microarray data of Saccharomyces cerevisiae / $c Vu TT, Vohradsky J.
- 314 __
- $a Laboratory of Bioinformatics, Institute of Microbiology, ASCR, Videnska 1083, 14220 Prague, Czech Republic
- 520 9_
- $a Microarray studies are capable of providing data for temporal gene expression patterns of thousands of genes simultaneously, comprising rich but cryptic information about transcriptional control. However available methods are still not adequate in extraction of useful information about transcriptional regulation from these data. This study presents a dynamic model of gene expression which allows for identification of transcriptional regulators using time series of gene expression. The algorithm was applied for identification of transcriptional regulators controlling 40 cell cycle regulated genes of Saccharomyces cerevisiae. The presented algorithm uses a dynamic model of time continuous gene expression with the assumption that the target gene expression profile results from the action of the upstream regulator. The goal is to apply the model to putative regulators to estimate the transcription pattern of a target gene using a least squares minimization procedure. The procedure iteratively tests all possible transcription factors and selects those that best approximate the target gene expression profile. Results were compared with independently published data and good agreement between the published and identified transcriptional regulators was found.
- 650 _2
- $a financování organizované $7 D005381
- 650 _2
- $a algoritmy $7 D000465
- 650 _2
- $a výpočetní biologie $7 D019295
- 650 _2
- $a stanovení celkové genové exprese $7 D020869
- 650 _2
- $a regulace genové exprese u hub $7 D015966
- 650 _2
- $a genové regulační sítě $7 D053263
- 650 _2
- $a CDC geny $7 D018816
- 650 _2
- $a metoda nejmenších čtverců $7 D016018
- 650 _2
- $a lineární modely $7 D016014
- 650 _2
- $a modely genetické $7 D008957
- 650 _2
- $a sekvenční analýza hybridizací s uspořádaným souborem oligonukleotidů $7 D020411
- 650 _2
- $a Saccharomyces cerevisiae $x genetika $7 D012441
- 650 _2
- $a transkripční faktory $x analýza $7 D014157
- 650 _2
- $a genetická transkripce $7 D014158
- 655 _2
- $a srovnávací studie $7 D003160
- 655 _2
- $a hodnotící studie $7 D023362
- 700 1_
- $a Vohradský, Jiří, $d 1956- $7 xx0048422
- 773 0_
- $w MED00003554 $t Nucleic acids research $g Roč. 35, č. 1 (2007), s. 279-287 $x 0305-1048
- 910 __
- $a ABA008 $b x $y 8
- 990 __
- $a 20091123115031 $b ABA008
- 991 __
- $a 20091201163716 $b ABA008
- 999 __
- $a ok $b bmc $g 699952 $s 562364
- BAS __
- $a 3
- BMC __
- $a 2007 $b 35 $c 1 $d 279-287 $i 0305-1048 $m Nucleic acids research $x MED00003554
- LZP __
- $a 2009-B3/dkme