The use of municipal solid waste as feedstock for biogas production offers an interesting possibility for waste treatment with the beneficial effect of gaining a green energy source. The involved processes are very complex, and many different organisms connected via a dynamic food web are associated with them. These complex interactions within these microbial communities are still not clearly understood. Therefore, a phospholipid fatty acid (PLFA) profile analysis method, well established in aerobic but still not as common in anaerobic systems, was used to throw some light on this matter. In the present investigation, a 750 m³ biogas reactor (Roppen, Austria) was monitored over a half-year period. During this period, four different phases in terms of gas production could be determined: low (I), increasing (II), high (III), and decreasing (IV) gas production. In combination with the PLFA profiles, we were able to identify changes in the microbial community associated with these phases.
- MeSH
- Anaerobiosis MeSH
- Bacteria isolation & purification metabolism MeSH
- Biodegradation, Environmental MeSH
- Biofuels analysis microbiology MeSH
- Bioreactors microbiology MeSH
- Phospholipids metabolism MeSH
- Fatty Acids metabolism MeSH
- Metabolome MeSH
- Microbiological Techniques methods MeSH
- Refuse Disposal MeSH
- Gases metabolism MeSH
- Digestion MeSH
- Publication type
- Journal Article MeSH
- Evaluation Study MeSH
The content of phospholipid fatty acids (PLFA) was determined in samples of polyvinyl alcohol lenses (Lentikats Biocatalyst, LB) with encapsulated Paracoccus denitrificans withdrawn during long-term denitrification experiments. The total PLFA content correlated highly with specific denitrification activities of LB as well as biomass estimation based on image analyses of microscopic photos. The results confirmed the applicability of PLFA determination for estimation of the amount of living encapsulated microbial biomass during biotechnological applications.
Possible enhancement of biodegradation of petroleum hydrocarbons in agricultural soil after tank truck accident (~5000 mg/kg dry soil initial concentration) by bioaugmentation of diesel degrading Pseudomonas fluorescens strain and addition of abiotic additives (humates, zeolite) was studied in a 9-month pot experiment. The biodegradation process was followed by means of analytical parameters (hydrocarbon index expressed as content of C10-C40 aliphatic hydrocarbons, ratio pristane/C17, and total organic carbon content) and characterization of soil microbial community (content of phospholipid fatty acids (PLFA) as an indicator of living microbial biomass, respiration, and dehydrogenase activity). The concentration of petroleum hydrocarbons (C10-C40) was successfully reduced by ~60% in all 15 experiment variants. The bioaugmentation resulted in faster hydrocarbon elimination. On the contrary, the addition of humates and zeolite caused only a negligible increase in the degradation rate. These factors, however, affected significantly the amount of PLFA. The humates caused significantly faster increase of the total PLFA suggesting improvement of the soil microenvironment. Zeolite caused significantly slower increase of the total PLFA; nevertheless it aided in homogenization of the soil. Comparison of microbial activities and total PLFA revealed that only a small fraction of autochthonous microbes took part in the biodegradation which confirms that bioaugmentation was the most important treatment.
- MeSH
- Gasoline * MeSH
- Biodegradation, Environmental * MeSH
- Kinetics MeSH
- Humans MeSH
- Soil * MeSH
- Soil Microbiology MeSH
- Agriculture * MeSH
- Zeolites chemistry MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Million of acres of U.S. wildlands are sprayed with herbicides to control invasive species, but relatively little is known about non-target effects of herbicide use. We combined greenhouse, field, and laboratory experiments involving the invasive forb spotted knapweed (Centaurea stoebe) and native bunchgrasses to assess direct and indirect effects of the forb-specific herbicide picloram on arbuscular mycorrhizal fungi (AMF), which are beneficial soil fungi that colonize most plants. Picloram had no effect on bunchgrass viability and their associated AMF in the greenhouse, but killed spotted knapweed and reduced AMF colonization of a subsequent host grown. Results were similar in the field where AMF abundance in bunchgrass-dominated plots was unaffected by herbicides one year after spraying based on 16:1ω5 phospholipid fatty acid (PLFA) and neutral lipid fatty acid (NLFA) concentrations. In spotted-knapweed-dominated plots, however, picloram application shifted dominance from spotted knapweed, a good AMF host, to bulbous bluegrass (Poa bulbosa), a poor AMF host. This coincided with a 63% reduction in soil 16:1ω5 NLFA concentrations but no reduction of 16:1ω5 PLFA. Because 16:1ω5 NLFA quantifies AMF storage lipids and 16:1ω5 PLFA occurs in AMF membrane lipids, we speculate that the herbicide-mediated reduction in host quality reduced fungal carbon storage, but not necessarily fungal abundance after one year in the field. Overall, in greenhouse and field experiments, AMF were only affected when picloram altered host quantity and quality. This apparent lack of direct effect was supported by our in-vitro trial where picloram applied to AMF mycelia did not reduce fungal biomass and viability. We show that the herbicide picloram can have profound, indirect effects on AMF within one year. Depending on herbicide-mediated shifts in host quality, rapid interventions may be necessary post herbicide applications to prevent loss of AMF abundance. Future research should assess consequences of these potential shifts for the restoration of native plants that differ in mycorrhizal dependency.
- MeSH
- Centaurea drug effects microbiology MeSH
- Herbicides adverse effects MeSH
- Poaceae drug effects microbiology MeSH
- Mycorrhizae drug effects MeSH
- Picloram adverse effects MeSH
- Publication type
- Journal Article MeSH
- Geographicals
- Montana MeSH
Microbial communities in human-impacted soils of ancient settlements have been proposed to be used as ecofacts (bioindicators) of different ancient anthropogenic activities. In this study, bacterial, archaeal and fungal communities inhabiting soil of three archaic layers, excavated at the archaeological site on Monte Iato (Sicily, Italy) and believed to have been created in a chronological order in archaic times in the context of periodic cultic feasts, were investigated in terms of (i) abundance (phospholipid fatty acid (PLFA) analysis and quantitative PCR)), (ii) carbon(C)-source consumption patterns (Biolog-Ecoplates) and (iii) diversity and community composition (Illumina amplicon sequencing). PLFA analyses demonstrated the existence of living bacteria and fungi in the soil samples of all three layers. The upper layer showed increased levels of organic C, which were not concomitant with an increment in the microbial abundance. In taxonomic terms, the results indicated that bacterial, archaeal and fungal communities were highly diverse, although differences in richness or diversity among the three layers were not detected for any of the communities. However, significantly different microbial C-source utilization patterns and structures of bacterial, archaeal and fungal communities in the three layers confirmed that changing features of soil microbial communities reflect different past human activities.
- MeSH
- Archaea genetics MeSH
- Archaeology methods MeSH
- Bacteria genetics MeSH
- Biodiversity MeSH
- DNA, Bacterial genetics MeSH
- DNA, Fungal genetics MeSH
- Nitrogen metabolism MeSH
- Ecosystem MeSH
- Fungi genetics MeSH
- Humans MeSH
- Human Activities MeSH
- Soil MeSH
- Soil Microbiology MeSH
- Carbon metabolism MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Sicily MeSH
Microbial ecology has been recognized as useful in archaeological studies. At Archaic Monte Iato in Western Sicily, a native (indigenous) building was discovered. The objective of this study was the first examination of soil microbial communities related to this building. Soil samples were collected from archaeological layers at a ritual deposit (food waste disposal) in the main room and above the fireplace in the annex. Microbial soil characterization included abundance (cellular phospholipid fatty acids (PLFA), viable bacterial counts), activity (physiological profiles, enzyme activities of viable bacteria), diversity, and community structure (bacterial and fungal Illumina amplicon sequencing, identification of viable bacteria). PLFA-derived microbial abundance was lower in soils from the fireplace than in soils from the deposit; the opposite was observed with culturable bacteria. Microbial communities in soils from the fireplace had a higher ability to metabolize carboxylic and acetic acids, while those in soils from the deposit metabolized preferentially carbohydrates. The lower deposit layer was characterized by higher total microbial and bacterial abundance and bacterial richness and by a different carbohydrate metabolization profile compared to the upper deposit layer. Microbial community structures in the fireplace were similar and could be distinguished from those in the two deposit layers, which had different microbial communities. Our data confirmed our hypothesis that human consumption habits left traces on microbiota in the archaeological evidence; therefore, microbiological residues as part of the so-called ecofacts are, like artifacts, key indicators of consumer behavior in the past.
- MeSH
- Acetates metabolism MeSH
- Archaeology * MeSH
- Bacteria classification genetics isolation & purification metabolism MeSH
- Bacterial Load MeSH
- Biodiversity MeSH
- Biomass MeSH
- History, Ancient MeSH
- DNA, Bacterial MeSH
- DNA, Fungal MeSH
- Enzyme Assays MeSH
- Phospholipids metabolism MeSH
- Heterotrophic Processes MeSH
- Fungi classification genetics metabolism MeSH
- Carboxylic Acids metabolism MeSH
- Human Activities history MeSH
- Fatty Acids metabolism MeSH
- Microbial Consortia genetics physiology MeSH
- Soil chemistry MeSH
- Soil Microbiology * MeSH
- RNA, Ribosomal, 16S genetics MeSH
- Cluster Analysis MeSH
- Check Tag
- History, Ancient MeSH
- Publication type
- Journal Article MeSH
- Historical Article MeSH
Root colonization by arbuscular mycorrhizal fungi (AMF) can be quantified by different approaches. We compared two approaches that enable discrimination of specific AMF taxa and are therefore emerging as alternative to most commonly performed microscopic quantification of AMF in roots: quantitative real-time PCR (qPCR) using markers in nuclear ribosomal DNA (nrDNA) and mitochondrial ribosomal DNA (mtDNA). In a greenhouse experiment, Medicago truncatula was inoculated with four isolates belonging to different AMF species (Rhizophagus irregularis, Claroideoglomus claroideum, Gigaspora margarita and Funneliformis mosseae). The AMF were quantified in the root samples by qPCR targeted to both markers, microscopy and contents of AMF-specific phospholipid fatty acids (PLFA). Copy numbers of nrDNA and mtDNA were closely related within all isolates; however, the slopes and intercepts of the linear relationships significantly differed among the isolates. Across all isolates, a large proportion of variance in nrDNA copy numbers was explained by root colonization intensity or contents of AMF-specific PLFA, while variance in mtDNA copy numbers was mainly explained by differences among AMF isolates. We propose that the encountered inter-isolate differences in the ratios of mtDNA and nrDNA copy numbers reflect different physiological states of the isolates. Our results suggest that nrDNA is a more suitable marker region than mtDNA for the quantification of multiple AMF taxa as its copy numbers are better related to fungal biomass across taxa than are copy numbers of mtDNA.
Three types of Miocene claystones (amorphous, lamellar, and transitional) were aseptically sampled from depths of 30 m and 150 m below the soil surface. Respiration of these sediments was measured under conditions that prevented inoculation by other microorganisms not indigenous to the claystones in situ. Microbial respiration was higher in lamellar than amorphous claystones and was not affected by sampling depth. During cultivation, microbial biomass (as indicated by PLFA) significantly increased. Microbial biomass after cultivation was significantly higher in sediments from 30 m than from 150 m depth. Both microbial respiration and biomass increased after glucose addition.
- MeSH
- Aerobiosis MeSH
- Bacteria metabolism MeSH
- Biomass MeSH
- Solid Phase Extraction MeSH
- Phospholipids analysis MeSH
- Glucose metabolism MeSH
- Fungi metabolism MeSH
- Oxygen metabolism MeSH
- Fatty Acids analysis MeSH
- Microbial Consortia physiology MeSH
- Gas Chromatography-Mass Spectrometry MeSH
- Soil analysis MeSH
- Soil Microbiology MeSH
- Aluminum Silicates analysis classification MeSH
- Fossils MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
This review deals with techniques and methods used in the study of the function and development of microorganisms occurring in soil with emphasis on the contributions of Czech Academician Ivan Málek and his coworkers or fellows (Jiří Macura, František Kunc) to the development of basic techniques used in soil microbiology. Early studies, including batch cultivation and respirometric techniques, as well as later developments of percolation and continuous-flow methods of cultivation of soil microorganisms are discussed. Recent developments in the application of analytical chemistry (HPLC or GC) and of molecular biological techniques to ecological questions that have revolutionized concepts in soil microbiology and microbial ecology are also briefly mentioned, including denaturing gradient gel electrophoresis (DGGE), temperature gradient gel electrophoresis (TGGE), phospholipid fatty acid analysis (PLFA) and others. The shift of soil microbiology from the study of individual microorganisms to entire microbial communities, including nonculturable species, is briefly discussed.
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.