The present study investigates the physicochemical properties and stability of a novel lipid-based formulation-surfactant-enriched oil marbles containing abiraterone acetate. While the biopharmaceutical performance of this formulation has been reported recently, this study aims to fill the gap between a promising in vivo performance and industrial applicability. A series of techniques were employed to assess the solid-state characteristics of oil marble cores along with their physicochemical properties upon stability testing. The chemical stability of abiraterone acetate in the formulation was also investigated. The core of the formulation was found to be stable both physically and chemically over 12 months of storage. The in vitro performance of stressed samples was evaluated using a dissolution experiment. The formulation has successfully self-emulsified upon incubation in bio-relevant media, resulting in a fast and complete API release. An important issue connected with the excipient used as a covering material of oil marbles has been identified. The seemingly insignificant water sorption caused agglomeration of the oil marbles and consequently compromised the dissolution rate in some of the stressed samples. Replacing HPMC with lactose as a covering material resulted in more favorable properties upon storage. Overall, it has been shown that oil marbles are an industrially applicable concept of the solidified lipid-based formulation.
Actinobacteria are important cave inhabitants, but knowledge of how anthropization and anthropization-related visual marks affect this community on cave walls is lacking. We compared Actinobacteria communities among four French limestone caves (Mouflon, Reille, Rouffignac, and Lascaux) ranging from pristine to anthropized, and within Lascaux Cave between marked (wall visual marks) and unmarked areas in different rooms (Sas-1, Passage, Apse, and Diaclase). In addition to the 16S rRNA gene marker, 441 bp fragments of the hsp65 gene were used and an hsp65-related taxonomic database was constructed for the identification of Actinobacteria to the species level by Illumina-MiSeq analysis. The hsp65 marker revealed higher resolution for species and higher richness (99% operational taxonomic units cutoff) versus the 16S rRNA gene; however, more taxa were identified at higher taxonomic ranks. Actinobacteria communities varied between Mouflon and Reille caves (both pristine), and Rouffignac and Lascaux (both anthropized). Rouffignac displayed high diversity of Nocardia, suggesting human inputs, and Lascaux exhibited high Mycobacterium relative abundance, whereas Gaiellales were typical in pristine caves and the Diaclase (least affected area of Lascaux Cave). Within Lascaux, Pseudonocardiaceae dominated on unmarked walls and Streptomycetaceae (especially Streptomyces mirabilis) on marked walls, indicating a possible role in mark formation. A new taxonomic database was developed. Although not all Actinobacteria species were represented, the use of the hsp65 marker enabled species-level variations of the Actinobacteria community to be documented based on the extent of anthropogenic pressure. This approach proved effective when comparing different limestone caves or specific conditions within one cave.
- MeSH
- Actinobacteria * genetika MeSH
- Bacteria MeSH
- fylogeneze MeSH
- jeskyně * mikrobiologie MeSH
- lidé MeSH
- RNA ribozomální 16S genetika MeSH
- uhličitan vápenatý MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Due to the presence of toxic pollutants, soils in former military areas need remedial actions with environmentally friendly methods. Greenhouse experiments were conducted to investigate the aided phytostabilization of multi-heavy metals (HMs), i.e. Cd, Cr, Cu, Ni, Pb, Zn, in post-military soil by Festuca rubra and three mineral amendments (diatomite, dolomite and halloysite). The amendments were applied at 0 and 3.0% to each pot filled with 5 kg of polluted soil. After seven weeks of the phytostabilization, selected soil properties, biomass yield of F. rubra and immobilization of HMs by their accumulation in plant and redistribution among individual fractions in soil were determined. In addition, ecotoxicology parameters of non-amended and amended soil were established using Phytotoxkit (Sinapsis alba) and Ostracodtoxkit (Heterocypris incongruens) tests. The addition of halloysite significantly increased F. rubra biomass. Diatomite significantly increased both the Cd, Cu, Pb and Cr concentrations in the roots and the pH of the soil. The application of halloysite significantly decreased the Cd and Zn contents of the soil after the completion of the experiment. Dolomite and halloysite were more effective in HM immobilization in soil by decreasing their content in an exchangeable fraction than diatomite. These soil amendments significantly differentiated the length of S. alba roots and had a positive effect on the development of H. incongruens.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- Festuca chemie růst a vývoj MeSH
- hořčík chemie MeSH
- jíl chemie MeSH
- kořeny rostlin růst a vývoj MeSH
- látky znečišťující půdu analýza MeSH
- půda chemie MeSH
- regenerace a remediace životního prostředí metody MeSH
- těžké kovy analýza MeSH
- uhličitan vápenatý chemie MeSH
- vojenská zařízení * MeSH
- Publikační typ
- časopisecké články MeSH
A taxonomic study of two fluorescent Pseudomonas strains (HJ/4T and SJ/9/1T) isolated from calcite moonmilk samples obtained from two caves in the Moravian Karst in the Czech Republic was carried out. Results of initial 16S rRNA gene sequence analysis assigned both strains into the genus Pseudomonas and showed Pseudomonas yamanorum 8H1T as their closest neighbour with 99.8 and 99.7 % 16S rRNA gene similarities to strains HJ/4T and SJ/9/1T, respectively. Subsequent sequence analysis of rpoD, rpoB and gyrB housekeeping genes confirmed the highest similarity of both isolates to P. yamanorum 8H1T, but phylogeny and sequences similarities implied that they are representatives of two novel species within the genus Pseudomonas. Further study comprising whole-genome sequencing followed by average nucleotide identity and digital DNA-DNA hybridization calculations, repetitive sequence-based PCR fingerprinting with the REP and ERIC primers, automated ribotyping with the EcoRI restriction endonuclease, cellular fatty acid analysis, quinone and polar lipid characterization, and extensive biotyping confirmed clear separation of both analysed strains from the remaining Pseudomonas species and showed that they represent two novel species within the genus Pseudomonas for which the names Pseudomonas karstica sp. nov. (type strain HJ/4T=CCM 7891T=LMG 27930T) and Pseudomonas spelaei sp. nov. (type strain SJ/9/1T=CCM 7893T=LMG 27931T) are suggested.
- MeSH
- bakteriální geny MeSH
- DNA bakterií genetika MeSH
- fylogeneze * MeSH
- hybridizace nukleových kyselin MeSH
- jeskyně mikrobiologie MeSH
- lipidy analýza MeSH
- mastné kyseliny chemie MeSH
- Pseudomonas klasifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sekvenční analýza DNA MeSH
- techniky typizace bakterií MeSH
- uhličitan vápenatý * MeSH
- zastoupení bazí MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
To employ dual advantages of emulsion and gel, a facile approach was investigated to fabricate core/shells structured hydrogel beads based on sodium alginate (SA) via Pickering emulsion template and in situ gelation. The encapsulation and controlled release behavior were further studied using lysozyme (Ly) as the model protein. The optical micrographs and SEM images indicated the SA beads could well disperse with the size about 150 μm. CaCO3 microparticles were strong adhesive onto SA gel. It showed that 96.51 ± 0.62% Ly was loaded into the hydrogel beads. The released behavior of Ly could be regulated by external pH condition, and displayed highest release rate at pH 5.0. Whereas the lowest release rate was recorded at pH 7.0. The released behavior well followed the Hixcon-Crowell model which indicated that the release mechanism of Ly followed the corrosion diffusion law. The worth-while endeavor provide an artful and facile approach using Pickering emulsion template and in situ gelation to fabricate core/shells structured SA beads with high load capacity and controlled regulation of the entrapped functional component.
- MeSH
- algináty chemie MeSH
- difuze MeSH
- emulze MeSH
- hydrogely chemie MeSH
- kinetika MeSH
- koncentrace vodíkových iontů MeSH
- léky s prodlouženým účinkem * MeSH
- muramidasa chemie MeSH
- příprava léků metody MeSH
- roztoky MeSH
- uhličitan vápenatý chemie MeSH
- uvolňování léčiv MeSH
- změna skupenství MeSH
- Publikační typ
- časopisecké články MeSH
Léčiva s obsahem vápníku mají mnohostranné využití, jejich potřeba a účinnost je doložena jak při prevenci, tak i v terapii osteoporózy, osteomalacie, Sudeckova syndromu a některých poruch metabolismu vápníku. Vaječné skořápky se jako přírodní zdroj přímo nabízejí. Svým složením a obsahem minerálů spolu s organickými složkami kopírují složení kostí člověka, což potvrzují studie dokazující dobrou biologickou dostupnost vápníku z vaječných skořápek. Pozitivem je, že přípravek neobsahuje žádné pomocné látky, a je tedy vhodný i pro pacienty trpící nesnášenlivostí laktózy nebo potravinovými alergiemi. Tento článek shrnuje základní farmakologické vlastnosti a oblast použití vaječných skořápek jako zdroje vápníku pro výrobu léčiv. Dále jsou zmíněny farmakokinetické parametry, interakce, nežádoucí účinky a schválené indikace.
Drugs with high calcium content are widely used; their purpose and efficacy is reported both in prevention and therapy of osteoporosis, osteomalacia, Sudeck syndrome and some calcium metabolism disorders. Egg shells as a natural source are suitable. Their mineral and organic compound content copy the composition of human bones confirmed by a study proving sufficient biological availability of calcium from egg shells. Moreover, the product does not contain any additives, therefore, it is suitable for patients with lactose intolerance and food alergies. This review summarizes basic pharmacological properties and the field of use of egg shells as a source of calcium for drug manufacturing. Furthermore, pharmacokinetic parameters, interactions, adverse effects and approved indications are discussed.
- Klíčová slova
- Biomin H,
- MeSH
- biologická dostupnost MeSH
- biologické přípravky * aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- fosforečnany vápenaté terapeutické užití MeSH
- insulinu podobný růstový faktor I terapeutické užití MeSH
- klinické hodnocení nového léčiva * metody MeSH
- lékové interakce MeSH
- lidé MeSH
- nežádoucí účinky léčiv MeSH
- osteoporóza farmakoterapie prevence a kontrola MeSH
- statistika jako téma MeSH
- těhotenství MeSH
- uhličitan vápenatý aplikace a dávkování škodlivé účinky terapeutické užití MeSH
- vaječná skořápka * chemie metabolismus účinky léků MeSH
- vápník dietní farmakokinetika farmakologie terapeutické užití MeSH
- Check Tag
- lidé MeSH
- těhotenství MeSH
The experiment was carried out in order to evaluate the effects of trace element immobilizing soil amendments, i.e., chalcedonite, dolomite, halloysite, and diatomite on the chemical characteristics of soil contaminated with Cr and the uptake of metals by plants. The study utilized analysis of variance (ANOVA), principal component analysis (PCA) and Factor Analysis (FA). The content of trace elements in plants, pseudo-total and extracted by 0.01 M CaCl₂, were determined using the method of spectrophotometry. All of the investigated element contents in the tested parts of Indian mustard (Brassica juncea L.) differed significantly in the case of applying amendments to the soil, as well as Cr contamination. The greatest average above-ground biomass was observed when halloysite and dolomite were amended to the soil. Halloysite caused significant increases of Cr concentrations in the roots. The obtained values of bioconcentration and translocation factors observed for halloysite treatment indicate the effectiveness of using Indian mustard in phytostabilization techniques. The addition of diatomite significantly increased soil pH. Halloysite and chalcedonite were shown to be the most effective and decreased the average Cr, Cu and Zn contents in soil.
- MeSH
- biodegradace MeSH
- biomasa MeSH
- hořčice rodu Brassica metabolismus MeSH
- hořčík chemie MeSH
- jíl MeSH
- koncentrace vodíkových iontů MeSH
- kořeny rostlin metabolismus MeSH
- kovy chemie metabolismus MeSH
- látky znečišťující půdu chemie metabolismus MeSH
- oxid křemičitý chemie MeSH
- průmysl MeSH
- průmyslový odpad MeSH
- půda chemie MeSH
- silikáty hliníku chemie MeSH
- uhličitan vápenatý chemie MeSH
- Publikační typ
- časopisecké články MeSH
Phytomanagement of trace element-contaminated soils can reduce soil toxicity and restore soil ecological functions, including the soil gas exchange with the atmosphere. We studied the emission rate of the greenhouse gases (GHGs) CO2, CH4, and N2O; the potential CH4 oxidation; denitrification enzyme activity (DEA), and glucose mineralization of a Cu-contaminated soil amended with dolomitic limestone and compost, alone or in combination, after a 2-year phytomanagement with a mixed stand of Populus nigra, Salix viminalis, S. caprea, and Amorpha fruticosa. Soil microbial biomass and microbial community composition after analysis of the phospholipid fatty acids (PLFA) profile were determined. Phytomanagement significantly reduced Cu availability and soil toxicity, increased soil microbial biomass and glucose mineralization capacity, changed the composition of soil microbial communities, and increased the CO2 and N2O emission rates and DEA. Despite such increases, microbial communities were evolving toward less GHG emission per unit of microbial biomass than in untreated soils. Overall, the aided phytostabilization option would allow methanotrophic populations to establish in the remediated soils due to decreased soil toxicity and increased nutrient availability.
Terrestrial isopods moult first the posterior and then the anterior half of the body, allowing for storage and recycling of CaCO3. We used synchrotron-radiation microtomography to estimate mineral content within skeletal segments in sequential moulting stages of Porcellio scaber. The results suggest that all examined cuticular segments contribute to storage and recycling, however, to varying extents. The mineral within the hepatopancreas after moult suggests an uptake of mineral from the ingested exuviae. The total maximum loss of mineral was 46% for the anterior and 43% for the posterior cuticle. The time course of resorption of mineral and mineralisation of the new cuticle suggests storage and recycling of mineral in the posterior and anterior cuticle. The mineral in the anterior pereiopods decreases by 25% only. P. scaber has long legs and can run fast; therefore, a less mineralised and thus lightweight cuticle in pereiopods likely serves to lower energy consumption during escape behaviour. Differential demineralisation occurs in the head cuticle, in which the cornea of the complex eyes remains completely mineralised. The partes incisivae of the mandibles are mineralised before the old cuticle is demineralised and shed. Probably, this enables the animal to ingest the old exuviae after each half moult.
- MeSH
- fyziologická kalcifikace MeSH
- hepatopankreas fyziologie MeSH
- hlava fyziologie MeSH
- hmyzí proteiny fyziologie MeSH
- Isopoda fyziologie MeSH
- minerály chemie MeSH
- počítačová simulace MeSH
- počítačové zpracování obrazu MeSH
- rentgenová mikrotomografie MeSH
- rohovka fyziologie MeSH
- shazování tělního pokryvu MeSH
- synchrotrony MeSH
- uhličitan vápenatý chemie MeSH
- ústa fyziologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
- MeSH
- ekosystém MeSH
- mikro RNA metabolismus MeSH
- půda MeSH
- silikáty MeSH
- Spalax genetika metabolismus MeSH
- sympatrie * MeSH
- tok genů MeSH
- transkriptom * MeSH
- uhličitan vápenatý MeSH
- vznik druhů (genetika) * MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH