Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax

K. Li, L. Wang, BA. Knisbacher, Q. Xu, EY. Levanon, H. Wang, M. Frenkel-Morgenstern, S. Tagore, X. Fang, L. Bazak, I. Buchumenski, Y. Zhao, M. Lövy, X. Li, L. Han, Z. Frenkel, A. Beiles, YB. Cao, ZL. Wang, E. Nevo,

. 2016 ; 113 (27) : 7584-9. [pub] 20160623

Jazyk angličtina Země Spojené státy americké

Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc17031634

Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc17031634
003      
CZ-PrNML
005      
20171102112124.0
007      
ta
008      
171025s2016 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1073/pnas.1607497113 $2 doi
035    __
$a (PubMed)27339131
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Li, Kexin $u Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China; Institute of Evolution, University of Haifa, Haifa 3498838, Israel; nevo@research.haifa.ac.il likexin323@gmail.com sky109@zjnu.edu.cn wzl@zzu.edu.cn.
245    10
$a Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax / $c K. Li, L. Wang, BA. Knisbacher, Q. Xu, EY. Levanon, H. Wang, M. Frenkel-Morgenstern, S. Tagore, X. Fang, L. Bazak, I. Buchumenski, Y. Zhao, M. Lövy, X. Li, L. Han, Z. Frenkel, A. Beiles, YB. Cao, ZL. Wang, E. Nevo,
520    9_
$a Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation.
650    _2
$a zvířata $7 D000818
650    _2
$a uhličitan vápenatý $7 D002119
650    _2
$a ekosystém $7 D017753
650    _2
$a ženské pohlaví $7 D005260
650    _2
$a tok genů $7 D051456
650    12
$a vznik druhů (genetika) $7 D049810
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a mikro RNA $x metabolismus $7 D035683
650    _2
$a silikáty $7 D017640
650    _2
$a půda $7 D012987
650    _2
$a Spalax $x genetika $x metabolismus $7 D046308
650    12
$a sympatrie $7 D061350
650    12
$a transkriptom $7 D059467
655    _2
$a srovnávací studie $7 D003160
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Wang, Liuyang $u Department of Molecular Genetics and Microbiology, School of Medicine, Duke University, Durham, NC 27708;
700    1_
$a Knisbacher, Binyamin A
700    1_
$a Xu, Qinqin $u The People's Hospital of Qinghai Province, Xining 810007, China;
700    1_
$a Levanon, Erez Y $u The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel;
700    1_
$a Wang, Huihua $u Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China;
700    1_
$a Frenkel-Morgenstern, Milana $u Faculty of Medicine, Bar-Ilan University, Safed 13195, Israel;
700    1_
$a Tagore, Satabdi $u Faculty of Medicine, Bar-Ilan University, Safed 13195, Israel;
700    1_
$a Fang, Xiaodong $u Beijing Genomics Institute, BGI-Shenzhen, Shenzhen 518083, China;
700    1_
$a Bazak, Lily $u The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel;
700    1_
$a Buchumenski, Ilana $u The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel;
700    1_
$a Zhao, Yang $u Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
700    1_
$a Lövy, Matěj $u Department of Zoology, Faculty of Science, University of South Bohemia, 37005 Ceske Budejovice, Czech Republic;
700    1_
$a Li, Xiangfeng $u University of Chinese Academy of Sciences, Beijing 100049, China;
700    1_
$a Han, Lijuan $u Beijing Genomics Institute, BGI-Shenzhen, Shenzhen 518083, China;
700    1_
$a Frenkel, Zeev $u Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
700    1_
$a Beiles, Avigdor $u Institute of Evolution, University of Haifa, Haifa 3498838, Israel;
700    1_
$a Cao, Yi Bin $u College of Chemistry and Life Science, Zhejiang Normal University, Jinhua, Zhejiang 321004, China; nevo@research.haifa.ac.il likexin323@gmail.com sky109@zjnu.edu.cn wzl@zzu.edu.cn.
700    1_
$a Wang, Zhen Long $u School of Life Sciences, Zhengzhou University, Zhengzhou 450001, Henan, China nevo@research.haifa.ac.il likexin323@gmail.com sky109@zjnu.edu.cn wzl@zzu.edu.cn.
700    1_
$a Nevo, Eviatar $u Institute of Evolution, University of Haifa, Haifa 3498838, Israel; nevo@research.haifa.ac.il likexin323@gmail.com sky109@zjnu.edu.cn wzl@zzu.edu.cn.
773    0_
$w MED00010472 $t Proceedings of the National Academy of Sciences of the United States of America $x 1091-6490 $g Roč. 113, č. 27 (2016), s. 7584-9
856    41
$u https://pubmed.ncbi.nlm.nih.gov/27339131 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y a $z 0
990    __
$a 20171025 $b ABA008
991    __
$a 20171102112217 $b ABA008
999    __
$a ok $b bmc $g 1255227 $s 992661
BAS    __
$a 3
BAS    __
$a PreBMC
BMC    __
$a 2016 $b 113 $c 27 $d 7584-9 $e 20160623 $i 1091-6490 $m Proceedings of the National Academy of Sciences of the United States of America $n Proc Natl Acad Sci U S A $x MED00010472
LZP    __
$a Pubmed-20171025

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...