Divergent colonization traits, convergent benefits: different species of arbuscular mycorrhizal fungi alleviate Meloidogyne incognita damage in tomato

. 2024 Apr ; 34 (1-2) : 145-158. [epub] 20240305

Jazyk angličtina Země Německo Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38441668

Grantová podpora
CZ.02.2.69/0.0/0.0/18_054/0014676 Ministry of Education, Youth and Sports of the Czech Republic, co-financed by the European Union
No. 23-05453S Czech Science Foundation

Odkazy

PubMed 38441668
PubMed Central PMC10998783
DOI 10.1007/s00572-024-01139-7
PII: 10.1007/s00572-024-01139-7
Knihovny.cz E-zdroje

Arbuscular mycorrhizal fungi (AMF) can increase plant tolerance and/or resistance to pests such as the root-knot nematode Meloidogyne incognita. However, the ameliorative effects may depend on AMF species. The aim of this work was therefore to evaluate whether four AMF species differentially affect plant performance in response to M. incognita infection. Tomato plants grown in greenhouse conditions were inoculated with four different AMF isolates (Claroideoglomus claroideum, Funneliformis mosseae, Gigaspora margarita, and Rhizophagus intraradices) and infected with 100 second stage juveniles of M. incognita at two different times: simultaneously or 2 weeks after the inoculation with AMF. After 60 days, the number of galls, egg masses, and reproduction factor of the nematodes were assessed along with plant biomass, phosphorus (P), and nitrogen concentrations in roots and shoots and root colonization by AMF. Only the simultaneous nematode inoculation without AMF caused a large reduction in plant shoot biomass, while all AMF species were able to ameliorate this effect and improve plant P uptake. The AMF isolates responded differently to the interaction with nematodes, either increasing the frequency of vesicles (C. claroideum) or reducing the number of arbuscules (F. mosseae and Gi. margarita). AMF inoculation did not decrease galls; however, it reduced the number of egg masses per gall in nematode simultaneous inoculation, except for C. claroideum. This work shows the importance of biotic stress alleviation associated with an improvement in P uptake and mediated by four different AMF species, irrespective of their fungal root colonization levels and specific interactions with the parasite.

Zobrazit více v PubMed

Abd-Elgawad MMM. Optimizing safe approaches to manage plant-parasitic nematodes. Plants. 2021;10:1911. doi: 10.3390/plants10091911. PubMed DOI PMC

Ahamad L, Bhat AH, Kumar H, Rana A, Hasan MN, Ahmed I, Ahmed S, Machado RAR, Ameen F. From soil to plant: strengthening carrot defenses against Meloidogyne incognita with vermicompost and arbuscular mycorrhizal fungi biofertilizers. Front Microbiol. 2023;14:1206217. doi: 10.3389/fmicb.2023.1206217. PubMed DOI PMC

Ammiraju JS, Veremis JC, Huang X, Roberts PA, Kaloshian I. The heat-stable root-knot nematode resistance gene Mi-9 from Lycopersicon peruvianum is localized on the short arm of chromosome 6. Theor Appl Genet. 2003;106:478e484. doi: 10.1007/s00122-002-1106-y. PubMed DOI

Anjos ÉCTD, Cavalcante UMT, Gonçalves DMC, Pedrosa EMR, Santos VFD, Maia LC. Interactions between an arbuscular mycorrhizal fungus (Scutellospora heterogama) and the root-knot nematode (Meloidogyne incognita) on sweet passion fruit (Passiflora alata) Braz Arch Biol Technol. 2010;53:801–809. doi: 10.1590/S1516-89132010000400008. DOI

Azcon-Aguilar C, Barea JM. Arbuscular mycorrhizas and biological control of soilborne plant pathogens, an overview of the mechanisms involved. Mycorrhiza. 1996;6:457–464. doi: 10.1007/s005720050147. DOI

Banuelos J, Alarcón A, Larsen J, Cruz-Sánchez S, Trejo D. Interactions between arbuscular mycorrhizal fungi and Meloidogyne incognita in the ornamental plant Impatiens balsamina. J Soil Sci Plant Nutr. 2014;14:63–74.

Bergeson GB. Mobilization of minerals to the infection site of root knot nematodes. Phytopathology. 1966;56:1287–1289.

Berruti A, Lumini E, Balestrini R, Bianciotto V. Arbuscular mycorrhizal fungi as natural biofertilizers: let’s benefit from past successes. Front Microbiol. 2016;6:1559. doi: 10.3389/fmicb.2015.01559. PubMed DOI PMC

Blažková A, Jansa J, Püschel D, Vosatka M, Janoušková M. Is mycorrhiza functioning influenced by the quantitative composition of the mycorrhizal fungal community? Soil Biol Biochem. 2021;157:108249. doi: 10.1016/j.soilbio.2021.108249. DOI

Boussageon R, Marro N, Janoušková M, Brulé D, Wipf D, Courty PE. The fine-tuning of mycorrhizal pathway in Sorghum depends on both nitrogen-phosphorus availability and the identity of the fungal partner. Plant Cell Environ. 2022;45:3354–3366. doi: 10.1111/pce.14426. PubMed DOI

Buil PA, Jansa J, Blažková A, Holubík O, Duffková R, Rozmoš M, Püschel D, Kotianová M, Janoušková M. Infectivity and symbiotic efficiency of native arbuscular mycorrhizal fungi from high-input arable soils. Plant Soil. 2023;482:627–645. doi: 10.1007/s11104-022-05715-8. DOI

Cabello MN. Hydrocarbon pollution: its effect on native arbuscular mycorrhizal fungi (AMF) FEMS Microbiol Ecol. 1997;22:233–236. doi: 10.1111/j.1574-6941.1997.tb00375.x. DOI

Carneiro RG, Mazzafera P, Ferraz ICCB, Muraoka T, Trevelin PCO. Uptake and translocation of nitrogen, phosphorus and calcium in soybean infected with Meloidogyne incognita and M. javanica. Fitopatol Bras. 2002;27:141–150. doi: 10.1590/S0100-41582002000200004. DOI

Carrara JE, Heller WP. Arbuscular mycorrhizal species vary in their impact on nutrient uptake in sweet corn (Zea mays) and butternut squash (Cucurbita moschata) Front Agron. 2022;4:1040054. doi: 10.3389/fagro.2022.1040054. DOI

Castagnone-Sereno P, Danchin EGJ, Perfus-Barbeoch L, Abad P. Diversity and evolution of Root-Knot nematodes, Genus Meloidogyne: New insights from the genomic era. Annu Rev Phytopathol. 2013;51:203–220. doi: 10.1146/annurev-phyto-082712-102300. PubMed DOI

Castillo P, Nico AI, Azcón-Aguilar C, Del Río Rincón C, Calvet C, Jiménez-Díaz RM. Protection of olive planting stocks against parasitism of root-knot nematodes by arbuscular mycorrhizal fungi. Plant Pathol. 2006;55:705–713. doi: 10.1111/j.1365-3059.2006.01400.x. DOI

Chan C, Liao YY, Chiou TJ. The impact of phosphorus on plant immunity. Plant Cell Physiol. 2021;62(4):582–589. doi: 10.1093/pcp/pcaa168. PubMed DOI

Chen S, Jin W, Liu A, Zhang S, Liu D, Wang F, Lin X, He C. Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. Sci Hortic. 2013;160:222–229. doi: 10.1016/j.scienta.2013.05.039. DOI

da Silva Campos MA. Bioprotection by arbuscular mycorrhizal fungi in plants infected with Meloidogyne nematodes: a sustainable alternative. Crop Prot. 2020;135:105203. doi: 10.1016/j.cropro.2020.105203. DOI

de Almeida GQ, de Oliveira Silva J, Copati MGF, de Oliveira Dias F, dos Santos MC. Tomato breeding for disease resistance. Multi-Sci J. 2020;3(3):8–16. doi: 10.33837/msj.v3i3.1287. DOI

De Sá CSB, Campos MAS (2020) Arbuscular mycorrhizal fungi decrease Meloidogyne Enterolobii infection of Guava seedlings. J Helminthol 94:e183 PubMed

Decraemer W, Hunt DJ. Plant nematology. Wallingford UK: CABI; 2006. Structure and classification; pp. 3–32.

Di Rienzo JA, Guzmán AW, Casanoves F. A multiple-comparisons method based on the distribution of the root node distance of a binary tree. J Agric Biol Environ Stat. 2002;7:129–142. doi: 10.1198/10857110260141193. DOI

Diagne N, Ngom M, Djighaly PI, Fall D, Hocher V, Svistoonoff S. Roles of arbuscular mycorrhizal fungi on plant growth and performance: importance in biotic and abiotic stressed regulation. Diversity. 2020;12:370. doi: 10.3390/d12100370. DOI

Dowarah B, Gill SS, Agarwala N. Arbuscular mycorrhizal fungi in conferring tolerance to biotic stresses in plants. J Plant Growth Regul. 2022;41:1429–1444. doi: 10.1007/s00344-021-10392-50. DOI

Escobar C, Barcala M, Cabrera J, Fenoll C. Advances in botanical research. Academic; 2015. Overview of root-knot nematodes and giant cells; pp. 1–32.

Gao X, Starr J, Göbel C, Engelberth J, Feussner I, Tumlinson J, Kolomiets M. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol Plant Microbe Interact. 2008;21:98–109. doi: 10.1094/MPMI-21-1-0098. PubMed DOI

Grandison GS, Cooper KM. Interaction of vesicular-arbuscular mycorrhizae and cultivars of alfalfa susceptible and resistant to Meloidogyne hapla. J Nematol. 1986;18:141. PubMed PMC

Gutiérrez-Gutiérrez C, Palomares-Rius JE, Jiménez-Díaz RM, Castillo P. Host suitability of Vitis rootstocks to root-knot nematodes (Meloidogyne spp.) and the dagger nematode Xiphinema index, and plant damage caused by infections. Plant Pathol. 2011;60:575–585. doi: 10.1111/j.1365-3059.2010.02404.x. DOI

Hart MM, Reader RJ. Taxonomic basis for variation in the colonization strategy of arbuscular mycorrhizal fungi. New Phytol. 2002;153:335–344. doi: 10.1046/j.0028-646X.2001.00312.x. DOI

Hartig F, Lohse L (2020) Residual diagnostics for hierarchical (multi-level/mixed) regression models. Package ‘DHARMa’ Version 0.3.3.0. https://CRAN.R-project.org/package=DHARMa

Herrera-Parra E, Ramos-Zapata J, Basto-Pool C, Cristóbal-Alejo J (2021) Sweet pepper (Capsicum annuum) response to the inoculation of native arbuscular mycorrhizal fungi and the parasitism of root-knot Meloidogyne incognita. Revista Bio Ciencias 8:e982. 10.15741/revbio.08.e982

Hewitt EJ. Sand and water culture methods used in the study of plant nutrition. Technical communication no. 22. Commonwealth Agriculture Bureau; 1966.

Hodge A, Fitter AH. Substantial nitrogen acquisition by arbuscular mycorrhizal fungi from organic material has implications for N cycling. Proc Natl Acad Sci USA. 2010;107:13754–13759. doi: 10.1073/pnas.1005874107. PubMed DOI PMC

Hussey RS, Barker KR. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis Rep. 1973;57:1025–1028.

InfoStat versión 2011 (2011) Grupo InfoStat, FCA, Universidad Nacional de Córdoba, Argentina. http://www.infostat.com.ar

Ingraffia R, Amato G, Sosa-Hernández MA, Frenda AS, Rillig MC, Giambalvo D. Nitrogen type and availability drive mycorrhizal effects on wheat performance, nitrogen uptake and recovery, and production sustainability. Front Plant Sci. 2020;11:760. doi: 10.3389/fpls.2020.00760. PubMed DOI PMC

Jansa J, Smith FA, Smith SE. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytol. 2008;177:779–789. doi: 10.1111/j.1469-8137.2007.02294.x. PubMed DOI

Johnson NC, Graham JH, Smith FA. Functioning of mycorrhizal associations along the mutualism-parasitism continuum. New Phytol. 1997;135:575–585. doi: 10.1046/j.1469-8137.1997.00729.x. DOI

Jones JT, Haegeman A, Danchin EG, Gaur HS, Helder J, Jones MG, Kikuchi T, Manzanilla-López R, Palomares-Rius JE, Wesemael WM, Perry RN. Top 10 plant-parasitic nematodes in molecular plant pathology. Mol Plant Pathol. 2013;14:946–961. doi: 10.1111/mpp.12057. PubMed DOI PMC

Klironomos JN, Hart MM. Colonization of roots by arbuscular mycorrhizal fungi using different sources of inoculum. Mycorrhiza. 2002;12:181–184. doi: 10.1007/s00572-002-0169-6. PubMed DOI

Koerselman W, Meuleman AFM. The vegetation N: P ratio: a new tool to detect the nature of nutrient limitation. J Appl Ecol. 1996;33:1441–1450. doi: 10.2307/2404783. DOI

Koske RE, Gemma JN. A modified procedure for staining roots to detect VA mycorrhizas. Mycol Res. 1989;92:486–505. doi: 10.1016/S0953-7562(89)80195-9. DOI

López-Ráez JA, Verhage A, Fernandez I, García JM, Azcon-Aguilar C, Flors V, Pozo M. Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. J Exp Bot. 2010;61:2589–2601. doi: 10.1093/jxb/erq089. PubMed DOI PMC

Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P. Mycorrhizas reduce tomato root penetration by false root–knot nematode Nacobbus aberrans. Appl Soil Ecol. 2018;124:262–265. doi: 10.1016/j.apsoil.2017.11.011. DOI

Marro N, Grilli G, Soteras F, Caccia M, Longo S, Cofré N, Borda V, Burni M, Janoušková M, Urcelay C. The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis. New Phytol. 2022;235:320–332. doi: 10.1111/nph.18102. PubMed DOI

Marro N, Lax P, Doucet ME, Cabello M, Becerra A. Use of the arbuscular mycorrhizal fungus Glomus intraradices as biological control agent of the nematode Nacobbus aberrans parasitizing tomato. Braz Arch Biol Technol. 2014;57:668–674. doi: 10.1590/S1516-8913201402200. DOI

Marulanda A, Azcon R, Ruiz-Lozano JM. Contribution of six arbuscular mycorrhizal fungal isolates to water uptake by Lactuca sativa plants under drought stress. Physiol Plant. 2003;119:526–533. doi: 10.1046/j.1399-3054.2003.00196.x. DOI

Mc Gonigle TP, Miller MH, Evans DG, et al. A new method which gives and objective measure of colonization of roots by vesicular arbuscular mycorrhizal fungi. New Phytol. 1990;115:495–501. doi: 10.1111/j.1469-8137.1990.tb00476.x. PubMed DOI

Mensah JA, Koch AM, Antunes PM, et al. High functional diversity within species of arbuscular mycorrhizal fungi is associated with differences in phosphate and nitrogen uptake and fungal phosphate metabolism. Mycorrhiza. 2015;25:533–546. doi: 10.1007/S00572-015-0631-X. PubMed DOI

Mitchum MG, Hussey RS, Baum TJ, Wang X, Elling AA, Wubben M, Davis EL. Nematode effector proteins: an emerging paradigm of parasitism. New Phytol. 2013;199:879–894. doi: 10.1111/nph.12323. PubMed DOI

Molinari S, Leonetti P. Bio-control agents activate plant immune response and prime susceptible tomato against root-knot nematodes. PLoS ONE. 2019;14(12):e0213230. doi: 10.1371/journal.pone.021323. PubMed DOI PMC

Montero H, Choi J, Paszkowski U. Arbuscular mycorrhizal phenotyping: the dos and don’ts. New Phytol. 2019;221:1182–1186. doi: 10.1111/nph.15489. PubMed DOI PMC

Munkvold L, Kjøller R, Vestberg M, Rosendahl S, Jakobsen I. High functional diversity within species of arbuscular mycorrhizal fungi. New Phytol. 2004;164:357–364. doi: 10.1111/j.1469-8137.2004.01169.x. PubMed DOI

Murphy J, Riley JP. A modified single solution method the determination of phosphate. Anal Chim Acta. 1962;27:31–36. doi: 10.1016/S0003-2670(00)88444-5. DOI

Oteifa BA, Elgindi DM. Influence of parasitic duration of Meloidogyne javanica (Treub) on host nutrient uptake. Nematologica. 1962;8:216–220. doi: 10.1163/187529262X00459. DOI

Perry R, Moens M. Genomics and molecular genetics of plant-nematode interactions. Springer Netherlands; 2011. Introduction to plant-parasitic nematodes; modes of parasitism; pp. 3–20.

Phani V, Khan MR, Dutta TK. Plant-parasitic nematodes as a potential threat to protected agriculture: current status and management options. Crop Prot. 2021;144:105573. doi: 10.1016/j.cropro.2021.105573. DOI

Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proc Royal Soc B Biol Sci. 2009;276:4237–4245. doi: 10.1098/rspb.2009.1015. PubMed DOI PMC

Pozo MJ, Azcon-Aguilar C. Unraveling mycorrhiza-induced resistance. Curr Opin Plant Biol. 2007;10:393–398. doi: 10.1016/j.pbi.2007.05.004. PubMed DOI

Püschel D, Bitterlich M, Rydlová J, Jansa J. Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biol Biochem. 2021;157:1–11. doi: 10.1016/j.soilbio.2021.108243. DOI

Püschel D, Janoušková M, Hujslová M, Slavíková R, Gryndlerová H, Jansa J. Plant–fungus competition for nitrogen erases mycorrhizal growth benefits of Andropogon gerardii under limited nitrogen supply. Ecol Evol. 2016;6:4332–4346. doi: 10.1002/ece3.2207. PubMed DOI PMC

Qin WJ, Yan HY, Zou BY, Guo RZ, Ci DW, Tang ZH, Zou XX, Zhang XJ, Yu XN, Wang YF, Si T. Arbuscular mycorrhizal fungi alleviate salinity stress in peanut: evidence from pot-grown and field experiments. Food Energy Secur. 2021;10:e314. doi: 10.1002/fes3.314. DOI

R Development Core Team (2011) R: A language and environment for statistical computing

Rodriguez-Heredia M, Djian-Caporalino C, Ponchet M, Lapeyre L, Canaguier R, Fazari A, Marteu N, Industri B, Offroy-Chave M. Protective effects of mycorrhizal association in tomato and pepper against Meloidogyne incognita infection, and mycorrhizal networks for early mycorrhization of low mycotrophic plants. Phytopathol Mediterr. 2020;59:377–384. doi: 10.14601/Phyto-11637. DOI

Rolfe SA, Griffiths J, Ton J. Crying out for help with root exudates: adaptive mechanisms by which stressed plants assemble health-promoting soil microbiomes. Curr Opin Microbiol. 2019;49:73–82. doi: 10.1016/j.mib.2019.10.003. PubMed DOI

Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, da Silva GA, Seitz B, Seitz B, Sieverding E, Heijden MG, vander, Oehl F. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza. 2021;31:559–576. doi: 10.1007/s00572-021-01042-5. PubMed DOI PMC

Schouteden N, De Waele D, Panis B, Vos CM. Arbuscular mycorrhizal fungi for the biocontrol of plant-parasitic nematodes: a review of the mechanisms involved. Front Microbiol. 2015;6:1280. doi: 10.3389/fmicb.2015.01280. PubMed DOI PMC

Shafiee MF, Jenkins WR. Host-parasite relationships of Capsicum frutescens and Pratylenchus penetrans, Meloidogyne incognita acrita, and M. hapla. Phytopathol. 1963;53:325–328.

Sikes BA, Cottenie K, Klironomos JN. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J Ecol. 2009;97:1274–1280. doi: 10.1111/j.13652745.2009.01557.x. DOI

Smith FA, Grace EJ, Smith SE. More than a carbon economy: nutrient trade and ecological sustainability in facultative arbuscular mycorrhizal symbioses. New Phytol. 2009;182:347–358. doi: 10.1111/j.1469-8137.2008.02753.x. PubMed DOI

Smith SE, Smith FA. Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol. 2011;62:227–250. doi: 10.1146/annurev-arplant-042110-103846. PubMed DOI

Smith SE, Smith FA. Fresh perspectives on the roles of arbuscular mycorrhizal fungi in plant nutrition and growth. Mycologia. 2012;104:1–13. doi: 10.3852/11-229. PubMed DOI

Smith SE, Smith FA, Jakobsen I. Functional diversity in arbuscular mycorrhizal (AM) symbioses: the contribution of the mycorrhizal P uptake pathway is not correlated with mycorrhizal responses in growth or total P uptake. New Phytol. 2004;162:511–524. doi: 10.1111/j.1469-8137.2004.01039.x. DOI

Subedi S, Thapa B, Shrestha J. Root-knot nematode (Meloidogyne incognita) and its management: a review. J Agric Nat Resour. 2020;3(2):21–31. doi: 10.3126/janr.v3i2.32298. DOI

Talavera M, Itou K, Mizukubo T. Reduction of nematode damage by root colonization with arbuscular mycorrhiza (Glomus spp.) in tomato-Meloidogyne incognita (Tylenchida: Meloidogynidae) and carrot-Pratylenchus penetrans (Tylenchida: Pratylenchidae) pathosystems. Appl Entomol Zool. 2001;36:387–392. doi: 10.1303/aez.2001.387. DOI

Terry V, Kokkoris V, Villeneuve-Laroche M, Turcu B, Chapman K, Cornell C, Zheng Z, Stefani F, Corradi N. Mycorrhizal response of Solanum tuberosum to homokaryotic versus dikaryotic arbuscular mycorrhizal fungi. Mycorrhiza. 2023;33:333–344. doi: 10.1007/s00572-023-01123-7. PubMed DOI

Tian M, Chen YL, Li M, Liu RJ. Structure and function of arbuscular mycorrhiza: a review. J Appl Ecol. 2013;24:2369–2376. PubMed

Treseder KK, Allen MF. Direct nitrogen and phosphorus limitation of arbuscular mycorrhizal fungi: a model and field test. New Phytol. 2002;155:507–515. doi: 10.1046/j.1469-8137.2002.00470.x. PubMed DOI

Turrini A, Avio L, Giovannetti M, Agnolucci M. Functional complementarity of arbuscular mycorrhizal fungi and associated microbiota: the challenge of Translational Research. Front Plant Sci. 2018;9:1407. doi: 10.3389/fpls.2018.01407. PubMed DOI PMC

Vierheilig H, Steinkellner S, Khaosaad T. Mycorrhiza. Berlin: Springer; 2008. The biocontrol effect of mycorrhization on soilborne fungal pathogens and the autoregulation of the AM symbiosis: one mechanism, two effects? pp. 307–320.

Vilela RMIF, Kuster VC, Magalhães TA, Moraes CA, Paula Filho AC, Oliveira DC, Moench Impact of Meloidogyne incognita (nematode) infection on root tissues and cell wall composition of okra (Abelmoschus esculentus L. Moench, Malvaceae) Protoplasma. 2021;258:979–990. doi: 10.1007/s00709-021-01618-0. PubMed DOI

Voříšková A, Jansa J, Püschel D, Krüger M, Cajthaml T, Vosátka M, Janoušková M. Real-time PCR quantification of arbuscular mycorrhizal fungi: does the use of nuclear or mitochondrial markers make a difference? Mycorrhiza. 2017;27:577–585. doi: 10.1007/s00572-017-0777-9. PubMed DOI

Voříšková A, Jansa J, Püschel D, Vosátka M, Šmilauer P, Janoušková M. Abiotic contexts consistently influence mycorrhiza functioning independently of the composition of synthetic arbuscular mycorrhizal fungal communities. Mycorrhiza. 2019;29:127–139. doi: 10.1007/s00572-018-00878-8. PubMed DOI

Vos C, Claerhout S, Mkandawire R, Panis B, De Waele D, Elsen A. Arbuscular mycorrhizal fungi reduce root-knot nematode penetration through altered root exudation of their host. Plant Soil. 2012;354:335–345. doi: 10.1007/s11104-011-1070-x. DOI

Vos C, Tesfahun AN, Panis B, De Waele D, Elsen A. Arbuscular mycorrhizal fungi induce systemic resistance in tomato against the sedentary nematode Meloidogyne incognita and the migratory nematode Pratylenchus penetrans. Appl Soil Ecol. 2012;61:1–6. doi: 10.1016/j.apsoil.2012.04.007. DOI

Vos C, Schouteden N, Van Tuinen D, Chatagnier O, Elsen A, De Waele D, Panis B, Gianinazzi-Pearson V. Mycorrhiza-induced resistance against the root–knot nematode Meloidogyne incognita involves priming of defense gene responses in tomato. Soil Biol Bioch. 2013;60:45–54. doi: 10.1016/j.soilbio.2013.01.013. DOI

Waghmare C, Singh P, Paul S, Sharma HK. Influence of root-knot nematode, Meloidogyne incognita (Kofoid & White) Chitwood infection on different plant growth parameters in Mungbean, Vigna radiata (L.) Wilczek. Indian J Exp Biol. 2022;60:351–359.

Wang L, Chen X, Tang Z. Arbuscular mycorrhizal symbioses improved biomass allocation and reproductive investment of cherry tomato after root-knot nematodes infection. Plant Soil. 2023;482:513–527. doi: 10.1007/s11104-022-05708. DOI

Zbíral J. Analýza rostlinného materiálu. Jednotné pracovní postupy [Analysis of plant material. Unified techniques] Brno: Státní kontrolní a zkušební ústav zemědělský; 1994.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...