The effects of arbuscular mycorrhizal fungal species and taxonomic groups on stressed and unstressed plants: a global meta-analysis
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, metaanalýza, práce podpořená grantem
PubMed
35302658
DOI
10.1111/nph.18102
Knihovny.cz E-zdroje
- Klíčová slova
- arbuscular mycorrhizal fungi, biotic and abiotic stress, functional ecology, meta-analysis, plant performance, taxonomic identity,
- MeSH
- Glomeromycota * MeSH
- kořeny rostlin MeSH
- mykorhiza * MeSH
- rostliny mikrobiologie MeSH
- symbióza MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH
- práce podpořená grantem MeSH
The great majority of plants gain access to soil nutrients and enhance their performance under stressful conditions through symbiosis with arbuscular mycorrhizal fungi (AMF). The benefits that AMF confer vary among species and taxonomic groups. However, a comparative analysis of the different benefits among AMF has not yet been performed. We conducted a global meta-analysis of recent studies testing the benefits of individual AMF species and main taxonomic groups in terms of plant performance (growth and nutrition). Separately, we examined AMF benefits to plants facing biotic (pathogens, parasites, and herbivores) and abiotic (drought, salinity, and heavy metals) stress. AMF had stronger positive effects on phosphorus nutrition than on plant growth and nitrogen nutrition and the effects on the growth of plants facing biotic and abiotic stresses were similarly positive. While the AMF taxonomic groups showed positive effects on plant performance either with or without stress, Diversisporales were the most beneficial to plants without stress and Gigasporales to plants facing biotic stress. Our results provide a comprehensive analysis of the benefits of different AMF species and taxonomic groups on plant performance and useful insights for their management and use as bio-inoculants for agriculture and restoration.
Zobrazit více v PubMed
Antunes PM, Koch AM, Morton JB, Rillig MC, Klironomos JN. 2011. Evidence for functional divergence in arbuscular mycorrhizal fungi from contrasting climatic origins. New Phytologist 189: 507-514.
Asmelash F, Bekele T, Birhane E. 2016. The potential role of arbuscular mycorrhizal fungi in the restoration of degraded lands. Frontiers in Microbiology 7: 1095.
Augé RM. 2001. Water relations, drought and vesicular-arbuscular mycorrhizal symbiosis. Mycorrhiza 11: 3-42.
Azcón-Aguilar C, Barea JM. 1997. Arbuscular mycorrhizas and biological control of soil-borne plant pathogens-an overview of the mechanisms involved. Mycorrhiza 6: 457-464.
Basiru S, Mwanza HP, Hijri M. 2021. Analysis of arbuscular mycorrhizal fungal inoculant benchmarks. Microorganisms 9: 81.
Berruti A, Lumini E, Balestrini R, Bianciotto V. 2016. Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. Frontiers in Microbiology 6: 1559.
Bonaventure G. 2018. Plants recognize herbivorous insects by complex signalling networks. Annual Plant Reviews Online 47: 1-35.
Borenstein L. 2009. Effect sizes for continuous data. In: Cooper H, Hedges LV, Valentine JC, eds. The handbook of research synthesis and meta analysis. New York, NY, USA: Russell Sage Foundation, 279-293.
Chagnon PL, Bradley RL, Maherali H, Klironomos JN. 2013. A trait-based framework to understand life history of mycorrhizal fungi. Trends in Plant Science 18: 484-491.
Chandrasekaran M, Boughattas S, Hu S, Oh SH, Sa T. 2014. A meta-analysis of arbuscular mycorrhizal effects on plants grown under salt stress. Mycorrhiza 24: 611-625.
Chapin FS III. 1980. The mineral nutrition of wild plants. Annual Review of Ecology & Systematics 11: 233-260.
Chapin FS III, Autumn K, Pugnaire F. 1993. Evolution of suites of traits in response to environmental stress. The American Naturalist 142: 78-92.
Chapin FS III, Vitousek PM, Van Cleve K. 1986. The nature of nutrient limitation in plant communities. The American Naturalist 127: 48-58.
Chen ECH, Morin E, Beaudet D, Noel J, Yildirir G, Ndikumana S, Charron P, St-Onge C, Giorgi J, Krüger M et al. 2018. High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont Rhizophagus irregularis. New Phytologist 220: 1161-1171.
Clark RÁ, Zeto SK. 2000. Mineral acquisition by arbuscular mycorrhizal plants. Journal of Plant Nutrition 23: 867-902.
Cofré MN, Ferrari AE, Becerra A, Dominguez L, Wall LG, Urcelay C. 2017. Effects of cropping systems under no-till agriculture on arbuscular mycorrhizal fungi in Argentinean Pampas. Soil Use & Management 33: 364-378.
Davison J, Moora M, Öpik M, Adholeya A, Ainsaar L, Bâ A, Burla S, Diedhiou AG, Hiiesalu I, Jairus T et al. 2015. Global assessment of arbuscular mycorrhizal fungus diversity reveals very low endemism. Science 349: 970-973.
Davison J, Moora M, Semchenko M, Adenan SB, Ahmed T, Akhmetzhanova AA, Alatalo JM, Al-Quraishy S, Andriyanova E, Anslan S et al. 2021. Temperature and pH define the realised niche space of arbuscular mycorrhizal fungi. New Phytologist 231: 763-776.
De La Providencia IE, De Souza FA, Fernández F, Delmas NS, Declerck S. 2005. Arbuscular mycorrhizal fungi reveal distinct patterns of anastomosis formation and hyphal healing mechanisms between different phylogenic groups. New Phytologist 165: 261-271.
Delavaux CS, Smith-Ramesh LM, Kuebbing SE. 2017. Beyond nutrients: a meta-analysis of the diverse effects of arbuscular mycorrhizal fungi on plants and soils. Ecology 98: 2111-2119.
Díaz S, Cabido M. 2001. Vive la différence: plant functional diversity matters to ecosystem processes. Trends in Ecology & Evolution 16: 646-655.
Evelin H, Devi TS, Gupta S, Kapoor R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Frontiers in Plant Science 10: 470.
Gupta DK, Corpas FJ, Palma JM. 2013. Heavy metal stress in plants. Berlin, Germany: Springer, 240.
Guzman A, Montes M, Hutchins L, DeLaCerda G, Yang P, Kakouridis A, Dahlquist-Willard RM, Firestone MK, Bowles T, Kremen C. 2021. Crop diversity enriches arbuscular mycorrhizal fungal communities in an intensive agricultural landscape. New Phytologist 231: 447-459.
Hart MM, Antunes PM, Abbott LK. 2017. Unknown risks to soil biodiversity from commercial fungal inoculants. Nature Ecology & Evolution 1: 1.
Hart MM, Reader RJ. 2002. Host plant benefit from association with arbuscular mycorrhizal fungi: variation due to differences in size of mycelium. Biology & Fertility of Soils 36: 357-366.
Helgason T, Daniell TJ, Husband R, Fitter AH, Young JPW. 1998. Ploughing up the wood-wide web? Nature 394: 431.
Hoeksema JD, Chaudhary VB, Gehring CA, Johnson NC, Karst J, Koide RT, Pringle A, Zabinski C, Bever JD, Moore JC et al. 2010. A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecology Letters 13: 394-407.
Horvath DP, Bruggeman S, Moriles-Miller J, Anderson JV, Dogramaci M, Scheffler BE, Hernandez AG, Foley ME, Clay S. 2018. Weed presence altered biotic stress and light signaling in maize even when weeds were removed early in the critical weed-free period. Plant Direct 2: 1-15.
Igiehon NO, Babalola OO. 2017. Biofertilizers and sustainable agriculture: exploring arbuscular mycorrhizal fungi. Applied Microbiology & Biotechnology 101: 4871-4881.
Jansa J, Erb A, Oberholzer HR, Šmilauer P, Egli S. 2014. Soil and geography are more important determinants of indigenous arbuscular mycorrhizal communities than management practices in Swiss agricultural soils. Molecular Ecology 23: 2118-2135.
Jansa J, Mozafar A, Kuhn G, Anken T, Ruh R, Sanders IR, Frossard EJEA. 2003. Soil tillage affects the community structure of mycorrhizal fungi in maize roots. Ecological Applications 13: 1164-1176.
Jansa J, Smith FA, Smith SE. 2008. Are there benefits of simultaneous root colonization by different arbuscular mycorrhizal fungi? New Phytologist 177: 779-789.
Jayne B, Quigley M. 2014. Influence of arbuscular mycorrhiza on growth and reproductive response of plants under water deficit: a meta-analysis. Mycorrhiza 24: 109-119.
Klironomos JN, McCune J, Moutoglis P. 2004. Species of arbuscular mycorrhizal fungi affect mycorrhizal responses to simulated herbivory. Applied Soil Ecology 26: 133-141.
Koch AM, Antunes PM, Maherali H, Hart MM, Klironomos JN. 2017. Evolutionary asymmetry in the arbuscular mycorrhizal symbiosis: conservatism in fungal morphology does not predict host plant growth. New Phytologist 214: 1330-1337.
Koide RT, Mosse B. 2004. A history of research on arbuscular mycorrhiza. Mycorrhiza 14: 145-163.
Lanfranco L, Fiorilli V, Gutjahr C. 2018. Partner communication and role of nutrients in the arbuscular mycorrhizal symbiosis. New Phytologist 220: 1031-1046.
Lavorel S, Díaz S, Cornelissen JHC, Garnier E, Harrison SP, McIntyre S, Pausas JG, Pérez-Harguindeguy N, Roumet C, Urcelay C. 2007. Plant functional types: are we getting any closer to the Holy Grail? In: Canadell JG, Pataki DE, Pitelka LF, eds. Terrestrial ecosystems in a changing world. Berlin & Heidelberg, Germany: Springer, 149-164.
Lekberg Y, Koide RT. 2005. Is plant performance limited by abundance of arbuscular mycorrhizal fungi? A meta-analysis of studies published between 1988 and 2003. New Phytologist 168: 189-204.
Longo S, Cofré N, Soteras F, Grilli G, Lugo M, Urcelay C. 2016. Taxonomic and functional response of arbuscular mycorrhizal fungi to land use change in central Argentina. In: Pagano M, ed. Recent advances on mycorrhizal fungi. Cham, Switzerland: Springer International, 81-90.
Maherali H, Klironomos JN. 2007. Influence of phylogeny on fungal community assembly and ecosystem functioning. Science 316: 1746-1748.
Malicka M, Magurno F, Posta K, Chmura D, Piotrowska-Seget Z. 2021. Differences in the effects of single and mixed species of AMF on the growth and oxidative stress defense in Lolium perenne exposed to hydrocarbons. Ecotoxicology and Environmental Safety 217: 112252.
Maltz MR, Treseder KK. 2015. Sources of inocula influence mycorrhizal colonization of plants in restoration projects: a meta-analysis. Restoration Ecology 23: 625-634.
Marro N, Caccia M, Doucet ME, Cabello M, Becerra A, Lax P. 2018. Mycorrhizas reduce tomato root penetration by false root-knot nematode Nacobbus aberrans. Applied Soil Ecology 124: 262-265.
Martin FM, Uroz S, Barker DG. 2017. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. Science 356: 6340.
Mathur S, Jajoo A. 2020. Arbuscular mycorrhizal fungi protects maize plants from high temperature stress by regulating photosystem II heterogeneity. Industrial Crops & Products 143: 111934.
Medeiros AS, Goto BT, Ganade G. 2021. Ecological restoration methods influence the structure of arbuscular mycorrhizal fungal communities in degraded drylands. Pedobiologia 84: 150690.
Meena VS, Meena SK, Verma JP, Kumar A, Aeron A, Mishra PK, Bisht JK, Pattanayak A, Naveed M, Dotaniyah ML. 2017. Plant beneficial rhizospheric microorganism (PBRM) strategies to improve nutrients use efficiency: a review. Ecological Engineering 107: 8-32.
Moher D, Liberati A, Tetzlaff J, Altman DG. 2009. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Medicine 6: e1000097.
Newsham KK, Fitter AH, Watkinson AR. 1995. Multi-functionality and biodiversity in arbuscular mycorrhizas. Trends in Ecology & Evolution 10: 407-411.
Oehl F, Sieverding E, Ineichen K, Mäder P, Boller T, Wiemken A. 2003. Impact of land use intensity on the species diversity of arbuscular mycorrhizal fungi in agroecosystems of Central Europe. Applied and Environmental Microbiology 69: 2816-2824.
Oehl F, Sieverding E, Palenzuela J, Ineichen K, Silva GA. 2011. Advances in Glomeromycota taxonomy and classification. IMA Fungus 2: 191-199.
Parihar P, Singh S, Singh R, Singh VP, Prasad SM. 2015. Effect of salinity stress on plants and its tolerance strategies: a review. Environmental Science & Pollution Research 22: 4056-4075.
Porcel R, Aroca R, Ruiz-Lozano JM. 2012. Salinity stress alleviation using arbuscular mycorrhizal fungi. A review. Agronomy for Sustainable Development 32: 181-200.
Powell JR, Parrent JL, Hart MM, Klironomos JN, Rillig MC, Maherali H. 2009. Phylogenetic trait conservatism and the evolution of functional trade-offs in arbuscular mycorrhizal fungi. Proceedings of the Royal Society of London B: Biological Sciences 276: 4237-4245.
Primieri S, Magnoli SM, Koffel T, Stürmer SL, Bever JD. 2022. Perennial, but not annual legumes synergistically benefit from infection with arbuscular mycorrhizal fungi and rhizobia: a meta-analysis. New Phytologist 233: 505-514.
Püschel D, Bitterlich M, Rydlová J, Jansa J. 2021. Drought accentuates the role of mycorrhiza in phosphorus uptake. Soil Biology & Biochemistry 157: 108243.
R Development Core Team. 2021. R: a language and environment for statistical computing, v.4.1.2. Vienna, Austria: R Foundation for Statistical Computing. [WWW document] URL https://www.R-project.org/ [accessed 1 November 2021].
Ramírez-Viga TK, Aguilar R, Castillo-Argüero S, Chiappa-Carrara X, Guadarrama P, Ramos-Zapata J. 2018. Wetland plant species improve performance when inoculated with arbuscular mycorrhizal fungi: a meta-analysis of experimental pot studies. Mycorrhiza 28: 477-493.
Redecker D, Schüßler A, Stockinger H, Stürmer SL, Morton JB, Walker C. 2013. An evidence-based consensus for the classification of arbuscular mycorrhizal fungi (Glomeromycota). Mycorrhiza 23: 515-531.
Rosenberg MS. 2005. The file-drawer problem revisited: a general weighted method for calculating fail-safe numbers in meta-analysis. Evolution 59: 464-468.
Rosenthal R. 1991. Meta-analysis: a review. Psychosomatic Medicine 53: 247-271.
Säle V, Palenzuela J, Azcón-Aguilar C, Sánchez-Castro I, da Silva GA, Seitz B, Sieverding E, van der Heijden MGA, Oehl F. 2021. Ancient lineages of arbuscular mycorrhizal fungi provide little plant benefit. Mycorrhiza 31: 559-576.
Salehi-Lisar SY, Bakhshayeshan-Agdam H. 2016. Drought stress in plants: causes, consequences, and tolerance. In: Mohammad H, Shabir W, Soumen B, David B, Lam-Son T, eds. Drought stress tolerance in plants: physiology and biochemistry. Cham, Switzerland: Springer International, 1-16.
Salomon MJ, Demarmels R, Watts-Williams SJ, McLaughlin MJ, Kafle A, Ketelsen C, Soupire A, Bückinge H, Cavagnaro TR, van der Heijden MGA. 2022. Global evaluation of commercial arbuscular mycorrhizal inoculants under greenhouse and field conditions. Applied Soil Ecology 169: 104225.
Salvioli A, Ghignone S, Novero M, Navazio L, Venice F, Bagnaresi P, Bonfante P. 2016. Symbiosis with an endobacterium increases the fitness of a mycorrhizal fungus, raising its bioenergetic potential. The ISME Journal 10: 130-144.
Schüßler A, Walker C. 2010. The Glomeromycota. A species list with new families and new genera. Edinburgh & Kew, UK: The Royal Botanic Garden; Munich, Germany: Botanische Staatssammlung Munich; Corvallis, OR, USA: Oregon State University.
Serghi EU, Kokkoris V, Cornell C, Dettman J, Stefani F, Corradi N. 2021. Homo-and dikaryons of the arbuscular mycorrhizal fungus Rhizophagus irregularis differ in life history strategy. Frontiers in Plant Science 12: 1544.
Shine MB, Xiao X, Kachroo P, Kachroo A. 2019. Signaling mechanisms underlying systemic acquired resistance to microbial pathogens. Plant Science 279: 81-86.
Sikes BA, Cottenie K, Klironomos JN. 2009. Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. Journal of Ecology 97: 1274-1280.
da Silva EC, Nogueira RJMC, da Silva MA, de Albuquerque MB. 2011. Drought stress and plant nutrition. Plant Stress 5: 32-41.
Smith SE, Anderson IC, Smith FA. 2015. Mycorrhizal associations and phosphorus acquisition: from cells to ecosystems. Annual Plant Reviews 48: 409-440.
Smith SE, Read DJ. 2008. Mycorrhizal symbiosis. New York, NY, USA: Academic Press.
Solís-Ramos LY, Coto-López C, Andrade-Torres A. 2021. Role of arbuscular mycorrhizal symbiosis in remediation of anthropogenic soil pollution. Symbiosis 84: 321-336.
Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A et al. 2016. A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108: 1028-1046.
Srivastava S, Johny L, Adholeya A. 2021. Review of patents for agricultural use of arbuscular mycorrhizal fungi. Mycorrhiza 31: 127-136.
Steel PD, Kammeyer-Mueller JD. 2002. Comparing meta-analytic moderator estimation techniques under realistic conditions. Journal of Applied Psychology 87: 96.
Strullu-Derrien C, Selosse MA, Kenrick P, Martin FM. 2018. The origin and evolution of mycorrhizal symbioses: from palaeomycology to phylogenomics. New Phytologist 220: 1012-1030.
Tedersoo L, Bahram M, Zobel M. 2020. How mycorrhizal associations drive plant population and community biology. Science 367: 6480.
Tuck SL, Winqvist C, Mota F, Ahnström J, Turnbull LA, Bengtsson J. 2014. Land-use intensity and the effects of organic farming on biodiversity: a hierarchical meta-analysis. Journal of Applied Ecology 51: 746-755.
Van der Heijden MG, Boller T, Wiemken A, Sanders IR. 1998. Different arbuscular mycorrhizal fungal species are potential determinants of plant community structure. Ecology 79: 2082-2091.
Vannini C, Carpentieri A, Salvioli A, Novero M, Marsoni M, Testa L, Pinto MC, Amoresano A, Ortolani F, Bracale M et al. 2016. An interdomain network: the endobacterium of a mycorrhizal fungus promotes antioxidative responses in both fungal and plant hosts. New Phytologist 211: 265-275.
Viechtbauer W, Cheung MWL. 2010. Outlier and influence diagnostics for meta-analysis. Research Synthesis Methods 1: 112-125.
Voets L, De La Providencia IE, Declerck S. 2006. Glomeraceae and Gigasporaceae differ in their ability to form hyphal networks. New Phytologist 172: 185-188.
Weber SE, Diez JM, Andrews LV, Goulden ML, Aronson EL, Allen MF. 2019. Responses of arbuscular mycorrhizal fungi to multiple coinciding global change drivers. Fungal Ecology 40: 62-71.
Wu M, Yan Y, Wang Y, Mao QI, Fu Y, Peng X, Yang Z, Ren J, Liu A, Chen S et al. 2021. Arbuscular mycorrhizal fungi for vegetable (VT) enhance resistance to Rhizoctonia solani in watermelon by alleviating oxidative stress. Biological Control 152: 104433.
Zwetsloot P, Van Der Naald M, Sena ES, Howells DW, IntHout J, De Groot JAH, Chamuleau SAJ, MacLeod MR, Wever KE. 2017. Standardized mean differences cause funnel plot distortion in publication bias assessments. eLife 6: e24260.
Phenotypic selection gradients in a tripartite plant interaction in southern South America