plant performance
Dotaz
Zobrazit nápovědu
Optimized non-aqueous reversed-phase high-performance liquid chromatography method using acetonitrile-2-propanol gradient elution and the column coupling in the total length of 45 cm has been applied for the high resolution separation of plant oils important in food industry, dietetics and cosmetics. Positive-ion atmospheric pressure chemical ionization mass spectrometry is used for the unambiguous identification and also the reliable quantitation with the response factors approach. Based on the precise determination of individual triacyglycerol concentrations, the calculation of average parameters important in the nutrition is performed, i.e. average carbon number, average double bond number, relative concentrations of essential, saturated, monounsaturated and polyunsaturated fatty acids. Results are reported in the form of both chromatographic fingerprints and tables containing relative concentrations for all triacylglycerols and fatty acids in individual samples. In total, 264 triacylglycerols consisting of 28 fatty acids with the alkyl chain length from 6 to 26 carbon atoms and 0 to 4 double bonds have been identified in 26 industrial important plant oils.
- MeSH
- atmosférický tlak MeSH
- dietetika metody MeSH
- financování organizované MeSH
- hmotnostní spektrometrie metody MeSH
- kosmetické přípravky MeSH
- oleje rostlin MeSH
- potravinářský průmysl metody MeSH
- reprodukovatelnost výsledků MeSH
- triglyceridy analýza MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
The composition of plant membrane lipids was investigated by reversed-phase high performance liquid chromatography mass spectrometry with accurate mass measurement. The data dependent methods for the analysis of monogalactosyldiacylglycerols (MGDGs) and digalactosyldiacylglycerols (DGDGs) have been developed. The optimised chromatographic systems were based on a 2.0 mm i.d. Nucleosil C18 column with methanol/water (MGDGs) or acetonitrile/methanol/water (DGDGs) gradients. The galactolipids were ionised by electrospray operated in the positive ion mode and identified based on their MS/MS spectra. High resolution spectra with accurate masses were found to be essential for correct interpretation of the MS data. The elution order of non-oxidised MGDGs and DGDGs followed the equivalent carbon numbers. The methods were applied for detailed characterisation of the MGDGs and DGDGs in the leaves of Arabidopsis thaliana and Melissa officinalis.
- MeSH
- Arabidopsis chemie MeSH
- chromatografie s reverzní fází MeSH
- galaktolipidy chemie MeSH
- hmotnostní spektrometrie s elektrosprejovou ionizací MeSH
- meduňka chemie MeSH
- oxidace-redukce MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
MAIN CONCLUSION: The present review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones. Plant ecdysteroids (phytoecdysteroids) are natural polyhydroxylated compounds that have a four-ringed skeleton, usually composed of either 27 carbon atoms or 28-29 carbon atoms (biosynthetically derived from cholesterol or other plant sterols, respectively). Their physiological roles in plants have not yet been confirmed and their occurrence is not universal. Nevertheless, they are present at high concentrations in various plant species, including commonly consumed vegetables, and have a broad spectrum of pharmacological and medicinal properties in mammals, including hepatoprotective and hypoglycaemic effects, and anabolic effects on skeletal muscle, without androgenic side-effects. Furthermore, phytoecdysteroids can enhance stress resistance by promoting vitality and enhancing physical performance; thus, they are considered adaptogens. This review summarises current knowledge of phytoecdysteroids' biosynthesis, distribution within plants, biological importance and relations to plant hormones.
- MeSH
- ekdysteroidy biosyntéza MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostliny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
- MeSH
- koronární nemoc farmakoterapie MeSH
- léčivé rostliny MeSH
- lidé MeSH
- vazodilatancia MeSH
- Check Tag
- lidé MeSH
Brassinosteroids (BRs) are plant-specific steroid hormones that play essential roles in the regulation of many important physiological processes in plant life. Their extremely low concentrations (~pmoles/g FW) in plant tissue and huge differences in polarity of individual members within the BR family hamper their detection and quantification. To address this problem, an immunoaffinity sorbent with broad specificity and high capacity for different BR metabolites containing a monoclonal antibody (mAb) against a BR spacer (20S)-2α,3α-dihydroxy-7-oxa-7α-homo-5α-pregnane-6-one-20 carboxylic acid (BR4812) was used for the rapid and highly selective isolation of endogenous BRs containing a 2α,3α-diol in ring A from minute plant samples. This enrichment procedure was successfully applied as a sample preparation method prior to quantitative analysis of BRs in real plant tissues by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS). Use of immunoaffinity chromatography (IAC) increased the sensitivity of the UHPLC-MS/MS analysis owing to improvements in the BR signal-to-noise ratio (S/N) and matrix factor (MF). Although MF values of BRs analyzed in classical samples ranged from 8.9% to 47.4%, MF values for the IAC purified samples reached 44.5-96.6%. Thus, the developed IAC-UHPLC-MS/MS approach was shown to be a simple, robust, effective and extremely fast procedure requiring minute amounts of plant samples suitable for the quantitative profiling of many BR metabolites, helping to overcome the major problems associated with their determination in very complex plant matrices.
- MeSH
- Brassica napus chemie MeSH
- brassinosteroidy analýza izolace a purifikace MeSH
- chromatografie afinitní metody MeSH
- imobilizační protilátky chemie MeSH
- imunosorbenty chemie MeSH
- regulátory růstu rostlin analýza izolace a purifikace MeSH
- rostlinné extrakty chemie MeSH
- tandemová hmotnostní spektrometrie metody MeSH
- vysokoúčinná kapalinová chromatografie metody MeSH
- Publikační typ
- časopisecké články MeSH
Plant hormones cytokinins, auxin (indole-3-acetic acid), and abscisic acid are central to regulation of plant growth and defence to abiotic stresses such as salinity. Quantification of the hormone levels and determination of their ratios can reveal different plant strategies to cope with the stress, e.g., suppression of growth or mobilization of plant metabolism. This chapter describes a procedure enabling such quantification. Due to the high variability of these hormones in plant tissues, it is advantageous to determine their content in the same sample. Reverse phase and ion exchange chromatography allows separation of the individual hormone fractions. Hormones as well as their metabolites can be identified and quantified by LC/MS.
- MeSH
- cytokininy analýza izolace a purifikace MeSH
- fyziologický stres * MeSH
- hmotnostní spektrometrie MeSH
- kořeny rostlin chemie metabolismus MeSH
- kyselina abscisová analýza izolace a purifikace MeSH
- kyseliny indoloctové analýza izolace a purifikace MeSH
- listy rostlin chemie metabolismus MeSH
- rostlinné extrakty chemie MeSH
- rostliny chemie metabolismus MeSH
- salinita * MeSH
- tolerance k soli fyziologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Heterodera schachtii, a plant-parasitic cyst nematode, invades host roots and induces a specific syncytial feeding structure, from which it withdraws all required nutrients, causing severe yield losses. The system H. schachtii-Arabidopsis is an excellent research model for investigating plant defence mechanisms. Such responses are suppressed in well-established syncytia, whereas they are induced during early parasitism. However, the mechanisms by which the defence responses are modulated and the role of phytohormones are largely unknown. The aim of this study was to elucidate the role of hormone-based defence responses at the onset of nematode infection. First, concentrations of main phytohormones were quantified and the expression of several hormone-related genes was analysed using quantitative real-time (qRT)-PCR or GeneChip. Further, the effects of individual hormones were evaluated via nematode attraction and infection assays using plants with altered endogenous hormone concentrations. Our results suggest a pivotal and positive role for ethylene during nematode attraction, whereas jasmonic acid triggers early defence responses against H. schachtii. Salicylic acid seems to be a negative regulator during later syncytium and female development. We conclude that nematodes are able to impose specific changes in hormone pools, thus modulating hormone-based defence and signal transduction in strict dependence on their parasitism stage.
- MeSH
- Arabidopsis účinky léků genetika parazitologie fyziologie MeSH
- biotest MeSH
- cyklopentany farmakologie MeSH
- fyziologický stres * účinky léků genetika MeSH
- genetická transkripce účinky léků MeSH
- hmotnostní spektrometrie MeSH
- imunita rostlin * účinky léků MeSH
- kořeny rostlin účinky léků parazitologie MeSH
- kyselina salicylová farmakologie MeSH
- nemoci rostlin parazitologie MeSH
- oxylipiny farmakologie MeSH
- paraziti fyziologie MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- regulátory růstu rostlin metabolismus MeSH
- rostlinné geny MeSH
- Tylenchoidea účinky léků fyziologie MeSH
- vysokoúčinná kapalinová chromatografie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH