Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
31408497
PubMed Central
PMC6692064
DOI
10.1371/journal.pone.0221187
PII: PONE-D-19-14966
Knihovny.cz E-zdroje
- MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika metabolismus MeSH
- dítě MeSH
- DNA bakterií genetika MeSH
- dospělí MeSH
- infekce bakteriemi rodu Klebsiella enzymologie epidemiologie genetika mikrobiologie MeSH
- infekce spojené se zdravotní péčí enzymologie epidemiologie genetika mikrobiologie MeSH
- Klebsiella pneumoniae enzymologie genetika izolace a purifikace MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- multilokusová sekvenční typizace * MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- sekvenování celého genomu * MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- kojenec MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- předškolní dítě MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- bakteriální proteiny MeSH
- beta-laktamasy MeSH
- DNA bakterií MeSH
Studying bacterial population diversity is important to understand healthcare associated infections' epidemiology and has a significant impact on dealing with multidrug resistant bacterial outbreaks. We characterised the extended-spectrum beta-lactamase producing K. pneumoniae (ESBLp KPN) population in our hospital using mini-MLST. Then we used whole genome sequencing (WGS) to compare selected isolates belonging to the most prevalent melting types (MelTs) and the colonization/infection pair isolates collected from one patient to study the ESBLp KPN population's genetic diversity. A total of 922 ESBLp KPN isolates collected between 7/2016 and 5/2018 were divided into 38 MelTs using mini-MLST with only 6 MelTs forming 82.8% of all isolates. For WGS, 14 isolates from the most prominent MelTs collected in the monitored period and 10 isolates belonging to the same MelTs collected in our hospital in 2014 were randomly selected. Resistome, virulome and ST were MelT specific and stable over time. A maximum of 23 SNV per core genome and 58 SNV per core and accessory genome were found. To determine the SNV relatedness cut-off values, 22 isolates representing colonization/infection pair samples obtained from 11 different patients were analysed by WGS with a maximum of 22 SNV in the core genome and 40 SNV in the core and accessory genome within pairs. The mini-MLST showed its potential for real-time epidemiology in clinical practice. However, for outbreak evaluation in a low diversity bacterial population, mini-MLST should be combined with more sensitive methods like WGS. Our findings showed there were only minimal differences within the core and accessory genome in the low diversity hospital population and gene based SNV analysis does not have enough discriminatory power to differentiate isolate relatedness. Thus, intergenic regions and mobile elements should be incorporated into the analysis scheme to increase discriminatory power.
Department of Biomedical Engineering Brno University of Technology Brno Czech Republic
Department of Clinical Microbiology University Hospital Brno Brno Czech Republic
Department of Internal Medicine Hematology and Oncology Masaryk University Brno Czech Republic
Department of Internal Medicine Hematology and Oncology University Hospital Brno Brno Czech Republic
Zobrazit více v PubMed
Ito R, Shindo Y, Kobayashi D, Ando M, Jin W, Wachino J, et al. Molecular epidemiological characteristics of Klebsiella pneumoniae associated with bacteremia among patients with pneumonia. J Clin Microbiol. 2015;53(3):879–86. 10.1128/JCM.03067-14 PubMed DOI PMC
Shon AS, Bajwa RP, Russo TA. Hypervirulent (hypermucoviscous) Klebsiella pneumoniae: a new and dangerous breed. Virulence. 2013;4(2):107–18. 10.4161/viru.22718 PubMed DOI PMC
Beigverdi R, Jabalameli L, Jabalameli F, Emaneini M. Prevalence of extended-spectrum-beta-lactamase-producing Klebsiella pneumonia: first systematic review and meta-analysis from Iran. J Glob Antimicrob Resist. 2019. 10.1016/j.jgar.2019.01.020 . PubMed DOI
McDanel J, Schweizer M, Crabb V, Nelson R, Samore M, Khader K, et al. Incidence of Extended-Spectrum beta-Lactamase (ESBL)-Producing Escherichia coli and Klebsiella Infections in the United States: A Systematic Literature Review. Infect Control Hosp Epidemiol. 2017;38(10):1209–15. 10.1017/ice.2017.156 . PubMed DOI
Zhang J, Zhou K, Zheng B, Zhao L, Shen P, Ji J, et al. High Prevalence of ESBL-Producing Klebsiella pneumoniae Causing Community-Onset Infections in China. Front Microbiol. 2016;7:1830 10.3389/fmicb.2016.01830 PubMed DOI PMC
Andersson P, Tong SY, Bell JM, Turnidge JD, Giffard PM. Minim typing—a rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS One. 2012;7(3):e33530 10.1371/journal.pone.0033530 PubMed DOI PMC
Lilliebridge RA, Tong SY, Giffard PM, Holt DC. The utility of high-resolution melting analysis of SNP nucleated PCR amplicons—an MLST based Staphylococcus aureus typing scheme. PLoS One. 2011;6(6):e19749 10.1371/journal.pone.0019749 PubMed DOI PMC
Tong SY, Xie S, Richardson LJ, Ballard SA, Dakh F, Grabsch EA, et al. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms. PLoS One. 2011;6(12):e29189 10.1371/journal.pone.0029189 PubMed DOI PMC
Richardson LJ, Tong SY, Towers RJ, Huygens F, McGregor K, Fagan PK, et al. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes. Clin Microbiol Infect. 2011;17(9):1426–34. 10.1111/j.1469-0691.2010.03433.x . PubMed DOI
Schurch AC, Arredondo-Alonso S, Willems RJL, Goering RV. Whole genome sequencing options for bacterial strain typing and epidemiologic analysis based on single nucleotide polymorphism versus gene-by-gene-based approaches. Clin Microbiol Infect. 2018;24(4):350–4. 10.1016/j.cmi.2017.12.016 . PubMed DOI
Kwong JC, McCallum N, Sintchenko V, Howden BP. Whole genome sequencing in clinical and public health microbiology. Pathology. 2015;47(3):199–210. 10.1097/PAT.0000000000000235 PubMed DOI PMC
Perez-Losada M, Arenas M, Castro-Nallar E. Microbial sequence typing in the genomic era. Infect Genet Evol. 2017. 10.1016/j.meegid.2017.09.022 PubMed DOI PMC
Gilchrist CA, Turner SD, Riley MF, Petri WA, Jr., Hewlett EL. Whole-genome sequencing in outbreak analysis. Clin Microbiol Rev. 2015;28(3):541–63. 10.1128/CMR.00075-13 PubMed DOI PMC
Brhelova E, Kocmanova I, Racil Z, Hanslianova M, Antonova M, Mayer J, et al. Validation of Minim typing for fast and accurate discrimination of extended-spectrum, beta-lactamase-producing Klebsiella pneumoniae isolates in tertiary care hospital. Diagn Microbiol Infect Dis. 2016;86(1):44–9. 10.1016/j.diagmicrobio.2016.03.010 . PubMed DOI
Li H, Durbin R. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics. 2010;26(5):589–95. 10.1093/bioinformatics/btp698 PubMed DOI PMC
Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics. 2009;25(16):2078–9. 10.1093/bioinformatics/btp352 PubMed DOI PMC
Okonechnikov K, Golosova O, Fursov M, team U. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics. 2012;28(8):1166–7. 10.1093/bioinformatics/bts091 . PubMed DOI
Quainoo S, Coolen JPM, van Hijum S, Huynen MA, Melchers WJG, van Schaik W, et al. Whole-Genome Sequencing of Bacterial Pathogens: the Future of Nosocomial Outbreak Analysis. Clin Microbiol Rev. 2017;30(4):1015–63. 10.1128/CMR.00016-17 PubMed DOI PMC
Leopold SR, Goering RV, Witten A, Harmsen D, Mellmann A. Bacterial whole-genome sequencing revisited: portable, scalable, and standardized analysis for typing and detection of virulence and antibiotic resistance genes. J Clin Microbiol. 2014;52(7):2365–70. 10.1128/JCM.00262-14 PubMed DOI PMC
Cheong HS, Chung DR, Lee C, Kim SH, Kang CI, Peck KR, et al. Emergence of serotype K1 Klebsiella pneumoniae ST23 strains co-producing the plasmid-mediated AmpC beta-lactamase DHA-1 and an extended-spectrum beta-lactamase in Korea. Antimicrob Resist Infect Control. 2016;5:50 10.1186/s13756-016-0151-2 PubMed DOI PMC
Gorrie CL, Mirceta M, Wick RR, Judd LM, Wyres KL, Thomson NR, et al. Antimicrobial-Resistant Klebsiella pneumoniae Carriage and Infection in Specialized Geriatric Care Wards Linked to Acquisition in the Referring Hospital. Clin Infect Dis. 2018;67(2):161–70. 10.1093/cid/ciy027 PubMed DOI PMC
Dolejska M, Brhelova E, Dobiasova H, Krivdova J, Jurankova J, Sevcikova A, et al. Dissemination of IncFII(K)-type plasmids in multiresistant CTX-M-15-producing Enterobacteriaceae isolates from children in hospital paediatric oncology wards. Int J Antimicrob Agents. 2012;40(6):510–5. 10.1016/j.ijantimicag.2012.07.016 . PubMed DOI
Falco A, Barrios Y, Torres L, Sandrea L, Takiff H. Molecular epidemiology of KPC-producing Klebsiella pneumoniae isolated from patients in two public hospitals in Carabobo and Zulia states, Venezuela. Invest Clin. 2017;58(1):3–21. . PubMed
Lopez-Camacho E, Pano-Pardo JR, Ruiz-Carrascoso G, Wesselink JJ, Lusa-Bernal S, Ramos-Ruiz R, et al. Population structure of OXA-48-producing Klebsiella pneumoniae ST405 isolates during a hospital outbreak characterised by genomic typing. J Glob Antimicrob Resist. 2018;15:48–54. 10.1016/j.jgar.2018.06.008 . PubMed DOI
Fu L, Huang M, Zhang X, Yang X, Liu Y, Zhang L, et al. Frequency of virulence factors in high biofilm formation blaKPC-2 producing Klebsiella pneumoniae strains from hospitals. Microb Pathog. 2018;116:168–72. 10.1016/j.micpath.2018.01.030 . PubMed DOI
Martin RM, Cao J, Brisse S, Passet V, Wu W, Zhao L, et al. Molecular Epidemiology of Colonizing and Infecting Isolates of Klebsiella pneumoniae. mSphere. 2016;1(5). 10.1128/mSphere.00261-16 PubMed DOI PMC
Zhou H, Liu W, Qin T, Liu C, Ren H. Defining and Evaluating a Core Genome Multilocus Sequence Typing Scheme for Whole-Genome Sequence-Based Typing of Klebsiella pneumoniae. Front Microbiol. 2017;8:371 10.3389/fmicb.2017.00371 PubMed DOI PMC
Weterings V, Zhou K, Rossen JW, van Stenis D, Thewessen E, Kluytmans J, et al. An outbreak of colistin-resistant Klebsiella pneumoniae carbapenemase-producing Klebsiella pneumoniae in the Netherlands (July to December 2013), with inter-institutional spread. Eur J Clin Microbiol Infect Dis. 2015;34(8):1647–55. 10.1007/s10096-015-2401-2 . PubMed DOI
Gorrie CL, Mirceta M, Wick RR, Edwards DJ, Thomson NR, Strugnell RA, et al. Gastrointestinal Carriage Is a Major Reservoir of Klebsiella pneumoniae Infection in Intensive Care Patients. Clin Infect Dis. 2017;65(2):208–15. 10.1093/cid/cix270 . PubMed DOI PMC
Little ML, Qin X, Zerr DM, Weissman SJ. Molecular epidemiology of colonizing and disease-causing Klebsiella pneumoniae in paediatric patients. J Med Microbiol. 2014;63(Pt 4):610–6. 10.1099/jmm.0.063354-0 PubMed DOI PMC
Word Entropy-Based Approach to Detect Highly Variable Genetic Markers for Bacterial Genotyping