Rapid Identification of Pseudomonas aeruginosa International High-Risk Clones Based on High-Resolution Melting Analysis

. 2023 Feb 14 ; 11 (1) : e0357122. [epub] 20230111

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36629420

The Pseudomonas aeruginosa population has a nonclonal epidemic structure. It is generally composed of a limited number of widespread clones selected from a background of many rare and unrelated genotypes recombining at high frequency. Due to the increasing prevalence of nosocomial infections caused by multidrug-resistant/extensively drug-resistant (MDR/XDR) strains, it is advisable to implement infection control measures. Pulsed-field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) are considered the gold standard methods in bacterial typing, despite being limited by cost, staff, and instrumental demands. Here, we present a novel mini-MLST scheme for P. aeruginosa rapid genotyping based on high-resolution melting analysis. Using the proposed mini-MLST scheme, 3,955 existing sequence types (STs) were converted into 701 melting types (MelTs), resulting in a discriminatory power of D = 0.993 (95% confidence interval [CI], 0.992 to 0.994). Whole-genome sequencing of 18 clinical isolates was performed to support the newly designed mini-MLST scheme. The clonal analysis of STs belonging to MelTs associated with international high-risk clones (HRCs) performed by goeBURST software revealed that a high proportion of the included STs are highly related to HRCs and have also been witnessed as responsible for serious infections. Therefore, mini-MLST provides a clear warning for the potential spread of P. aeruginosa clones recognized as MDR/XDR strains with possible serious outcomes. IMPORTANCE In this study, we designed a novel mini-MLST typing scheme for Pseudomonas aeruginosa. Its great discriminatory power, together with ease of performance and short processing time, makes this approach attractive for prospective typing of large isolate sets. Integrating the novel P. aeruginosa molecular typing scheme enables the development and spread of MDR/XDR high-risk clones to be investigated.

Zobrazit více v PubMed

Reynolds D, Kollef M. 2021. The epidemiology and pathogenesis and treatment of Pseudomonas aeruginosa infections: an update. Drugs 81:2117–2131. doi:10.1007/s40265-021-01635-6. PubMed DOI PMC

Mathee K, Narasimhan G, Valdes C, Qiu X, Matewish J, Koehrsen M, Rokas A, Yandava C, Engels R, Zeng E, Olavarietta R, Doud M, Smith R, Montgomery P, White J, Godfrey P, Kodira C, Birren B, Galagan J, Lory S. 2008. Dynamics of Pseudomonas aeruginosa genome evolution. Proc Natl Acad Sci USA 105:3100–3105. doi:10.1073/pnas.0711982105. PubMed DOI PMC

Moradali M, Ghods S, Rehm B. 2017. Pseudomonas aeruginosa lifestyle: a paradigm for adaptation, survival, and persistence. Front Cell Infect Microbiol 7:39. doi:10.3389/fcimb.2017.00039. PubMed DOI PMC

Venier A, Leroyer C, Slekovec C, Talon D, Bertrand X, Parer S, Alfandari S, Guerin J, Megarbane B, Lawrence C, Clair B, Lepape A, Perraud M, Cassier P, Trivier D, Boyer A, Dubois V, Asselineau J, Rogues A, Thiébaut R, DYNAPYO study group . 2014. Risk factors for Pseudomonas aeruginosa acquisition in intensive care units: a prospective multicentre study. J Hosp Infect 88:103–108. doi:10.1016/j.jhin.2014.06.018. PubMed DOI

Breidenstein E, de la Fuente-Núñez C, Hancock R. 2011. Pseudomonas aeruginosa: all roads lead to resistance. Trends Microbiol 19:419–426. doi:10.1016/j.tim.2011.04.005. PubMed DOI

Horcajada J, Montero M, Oliver A, Sorlí L, Luque S, Gómez-Zorrilla S, Benito N, Grau S. 2019. Epidemiology and treatment of multidrug-resistant and extensively drug-resistant Pseudomonas aeruginosa infections. Clin Microbiol Rev 32:e00031-19. doi:10.1128/CMR.00031-19. PubMed DOI PMC

Antimicrobial resistance surveillance in Europe 2022 – 2020 data. 2022. WHO Regional Office for Europe/European Centre for Disease Prevention and Control, Copenhagen.

Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M, Monnet D, Pulcini C, Kahlmeter G, Kluytmans J, Carmeli Y, Ouellette M, Outterson K, Patel J, Cavaleri M, Cox E, Houchens C, Grayson M, Hansen P, Singh N, Theuretzbacher U, Magrini N, WHO Pathogens Priority List Working Group . 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect Dis 18:318–327. doi:10.1016/S1473-3099(17)30753-3. PubMed DOI

Chen J, Lau Y, Krishnan T, Chan K, Chang C. 2018. Recent advances in molecular diagnosis of Pseudomonas aeruginosa infection by state-of-the-art genotyping techniques. Front Microbiol 9:1104. doi:10.3389/fmicb.2018.01104. PubMed DOI PMC

Römling U, Wingender J, Müller H, Tümmler B. 1994. A major Pseudomonas aeruginosa clone common to patients and aquatic habitats. Appl Environ Microbiol 60:1734–1738. doi:10.1128/aem.60.6.1734-1738.1994. PubMed DOI PMC

Onteniente L, Brisse S, Tassios P, Vergnaud G. 2003. Evaluation of the polymorphisms associated with tandem repeats for Pseudomonas aeruginosa strain typing. J Clin Microbiol 41:4991–4997. doi:10.1128/JCM.41.11.4991-4997.2003. PubMed DOI PMC

Curran B, Jonas D, Grundmann H, Pitt T, Dowson C. 2004. Development of a multilocus sequence typing scheme for the opportunistic pathogen Pseudomonas aeruginosa. J Clin Microbiol 42:5644–5649. doi:10.1128/JCM.42.12.5644-5649.2004. PubMed DOI PMC

Tönnies H, Prior K, Harmsen D, Mellmann A. 2021. Establishment and evaluation of a core genome multilocus sequence typing scheme for whole-genome sequence-based typing of Pseudomonas aeruginosa. J Clin Microbiol 59:e01987-20. doi:10.1128/JCM.01987-20. PubMed DOI PMC

Pirnay J, De Vos D, Cochez C, Bilocq F, Vanderkelen A, Zizi M, Ghysels B, Cornelis P. 2002. Pseudomonas aeruginosa displays an epidemic population structure. Environ Microbiol 4:898–911. doi:10.1046/j.1462-2920.2002.00321.x. PubMed DOI

Pirnay J, Bilocq F, Pot B, Cornelis P, Zizi M, Van Eldere J, Deschaght P, Vaneechoutte M, Jennes S, Pitt T, De Vos D. 2009. Pseudomonas aeruginosa population structure revisited. PLoS One 4:e7740. doi:10.1371/journal.pone.0007740. PubMed DOI PMC

Mulet X, Cabot G, Ocampo-Sosa A, Domínguez M, Zamorano L, Juan C, Tubau F, Rodríguez C, Moyà B, Peña C, Martínez-Martínez L, Oliver A, Spanish Network for Research in Infectious Diseases (REIPI) . 2013. Biological markers of Pseudomonas aeruginosa epidemic high-risk clones. Antimicrob Agents Chemother 57:5527–5535. doi:10.1128/AAC.01481-13. PubMed DOI PMC

del Barrio-Tofiño E, López-Causapé C, Oliver A. 2020. Pseudomonas aeruginosa epidemic high-risk clones and their association with horizontally-acquired β-lactamases: 2020 update. Int J Antimicrob Agents 56:106196. doi:10.1016/j.ijantimicag.2020.106196. PubMed DOI

Tong SY, Giffard PM. 2012. Microbiological applications of high-resolution melting analysis. J Clin Microbiol 50:3418–3421. doi:10.1128/JCM.01709-12. PubMed DOI PMC

Lilliebridge R, Tong S, Giffard P, Holt D. 2011. The utility of high-resolution melting analysis of SNP nucleated PCR amplicons—an MLST based Staphylococcus aureus typing scheme. PLoS One 6:e19749. doi:10.1371/journal.pone.0019749. PubMed DOI PMC

Andersson P, Tong S, Bell J, Turnidge J, Giffard P. 2012. Minim typing—a rapid and low cost MLST based typing tool for Klebsiella pneumoniae. PLoS One 7:e33530. doi:10.1371/journal.pone.0033530. PubMed DOI PMC

Richardson L, Tong S, Towers R, Huygens F, McGregor K, Fagan P, Currie B, Carapetis J, Giffard P. 2011. Preliminary validation of a novel high-resolution melt-based typing method based on the multilocus sequence typing scheme of Streptococcus pyogenes. Clin Microbiol Infect 17:1426–1434. doi:10.1111/j.1469-0691.2010.03433.x. PubMed DOI

Tong SY, Xie S, Richardson LJ, Ballard SA, Dakh F, Grabsch EA, Grayson ML, Howden BP, Johnson PD, Giffard PM. 2011. High-resolution melting genotyping of Enterococcus faecium based on multilocus sequence typing derived single nucleotide polymorphisms. PLoS One 6:e29189. doi:10.1371/journal.pone.0029189. PubMed DOI PMC

Lévesque S, Michaud S, Arbeit RD, Frost EH. 2011. High-resolution melting system to perform multilocus sequence typing of Campylobacter jejuni. PLoS One 6:e16167. doi:10.1371/journal.pone.0016167. PubMed DOI PMC

Bezdicek M, Nykrynova M, Sedlar K, Kralova S, Hanslikova J, Komprdova A, Skutkova H, Kocmanova I, Mayer J, Lengerova M. 2021. Rapid high-resolution melting genotyping scheme for Escherichia coli based on MLST derived single nucleotide polymorphisms. Sci Rep 11:16572. doi:10.1038/s41598-021-96148-3. PubMed DOI PMC

Maatallah M, Cheriaa J, Backhrouf A, Iversen A, Grundmann H, Do T, Lanotte P, Mastouri M, Elghmati M, Rojo F, Mejdi S, Giske C. 2011. Population structure of Pseudomonas aeruginosa from five Mediterranean countries: evidence for frequent recombination and epidemic occurrence of CC235. PLoS One 6:e25617. doi:10.1371/journal.pone.0025617. PubMed DOI PMC

Jolley K, Bray J, Maiden M. 2018. Open-access bacterial population genomics: BIGSdb software, the PubMLST.org website and their applications. Wellcome Open Res 3:124. doi:10.12688/wellcomeopenres.14826.1. PubMed DOI PMC

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol 33:1870–1874. doi:10.1093/molbev/msw054. PubMed DOI PMC

Perini M, Piazza A, Panelli S, Di Carlo D, Corbella M, Gona F, Vailati F, Marone P, Cirillo D, Farina C, Zuccotti G, Comandatore F. 2020. EasyPrimer: user-friendly tool for pan-PCR/HRM primers design: development of an HRM protocol on wzi gene for fast Klebsiella pneumoniae typing. Sci Rep 10:1307. doi:10.1038/s41598-020-57742-z. PubMed DOI PMC

Untergasser A, Cutcutache I, Koressaar T, Ye J, Faircloth B, Remm M, Rozen S. 2012. Primer3—new capabilities and interfaces. Nucleic Acids Res 40:e115. doi:10.1093/nar/gks596. PubMed DOI PMC

Hunter P, Gaston M. 1988. Numerical index of the discriminatory ability of typing systems: an application of Simpson’s index of diversity. J Clin Microbiol 26:2465–2466. doi:10.1128/jcm.26.11.2465-2466.1988. PubMed DOI PMC

Bezdicek M, Nykrynova M, Plevova K, Brhelova E, Kocmanova I, Sedlar K, Racil Z, Mayer J, Lengerova M. 2019. Application of mini-MLST and whole genome sequencing in low diversity hospital extended-spectrum beta-lactamase producing Klebsiella pneumoniae population. PLoS One 14:e0221187. doi:10.1371/journal.pone.0221187. PubMed DOI PMC

van Mansfeld R, Willems R, Brimicombe R, Heijerman H, van Berkhout F, Wolfs T, van der Ent C, Bonten M. 2009. Pseudomonas aeruginosa genotype prevalence in Dutch cystic fibrosis patients and age dependency of colonization by various P. aeruginosa sequence types. J Clin Microbiol 47:4096–4101. doi:10.1128/JCM.01462-09. PubMed DOI PMC

Li H, Durbin R. 2010. Fast and accurate long-read alignment with Burrows-Wheeler transform. Bioinformatics 26:589–595. doi:10.1093/bioinformatics/btp698. PubMed DOI PMC

Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, Marth G, Abecasis G, Durbin R, 1000 Genome Project Data Processing Subgroup . 2009. The sequence alignment/map format and SAMtools. Bioinformatics 25:2078–2079. doi:10.1093/bioinformatics/btp352. PubMed DOI PMC

Okonechnikov K, Golosova O, Fursov M, UGENE team . 2012. Unipro UGENE: a unified bioinformatics toolkit. Bioinformatics 28:1166–1167. doi:10.1093/bioinformatics/bts091. PubMed DOI

Feil E, Li B, Aanensen D, Hanage W, Spratt B. 2004. eBURST: inferring patterns of evolutionary descent among clusters of related bacterial genotypes from multilocus sequence typing data. J Bacteriol 186:1518–1530. doi:10.1128/JB.186.5.1518-1530.2004. PubMed DOI PMC

Nascimento M, Sousa A, Ramirez M, Francisco A, Carriço J, Vaz C. 2017. PHYLOViZ 2.0: providing scalable data integration and visualization for multiple phylogenetic inference methods. Bioinformatics 33:128–129. doi:10.1093/bioinformatics/btw582. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...