A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in Central Africa with meteorological insights
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38347046
PubMed Central
PMC10861485
DOI
10.1038/s41598-024-54181-y
PII: 10.1038/s41598-024-54181-y
Knihovny.cz E-zdroje
- Klíčová slova
- Feed-forward network, Multilayer perceptron, Neural network, Solar radiation,
- Publikační typ
- časopisecké články MeSH
Promoting renewable energy sources, particularly in the solar industry, has the potential to address the energy shortfall in Central Africa. Nevertheless, a difficulty occurs due to the erratic characteristics of solar irradiance data, which is influenced by climatic fluctuations and challenging to regulate. The current investigation focuses on predicting solar irradiance on an inclined surface, taking into consideration the impact of climatic variables such as temperature, wind speed, humidity, and air pressure. The used methodology for this objective is Artificial Neural Network (ANN), and the inquiry is carried out in the metropolitan region of Douala. The data collection device used in this research is the meteorological station located at the IUT of Douala. This station was built as a component of the Douala sustainable city effort, in partnership with the CUD and the IRD. Data was collected at 30-min intervals for a duration of around 2 years, namely from January 17, 2019, to October 30, 2020. The aforementioned data has been saved in a database that underwent pre-processing in Excel and later employed MATLAB for the creation of the artificial neural network model. 80% of the available data was utilized for training the network, 15% was allotted for validation, and the remaining 5% was used for testing. Different combinations of input data were evaluated to ascertain their individual degrees of accuracy. The logistic Sigmoid function, with 50 hidden layer neurons, yielded a correlation coefficient of 98.883% between the observed and estimated sun irradiation. This function is suggested for evaluating the intensities of solar radiation at the place being researched and at other sites that have similar climatic conditions.
Applied Science Research Center Applied Science Private University Amman 11937 Jordan
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Panda, S. et al. Residential demand side management model, optimization and future perspective: A review. Energy Rep. 8, 3727–3766. ISSN 2352-4847 10.1016/j.egyr.2022.02.300 (2022).
Meena CS, Kumar A, Jain S, Rehman AU, Mishra S, Sharma NK, Bajaj M, Shafiq M, Eldin ET. "Innovation in green building sector for sustainable future. Energies. 2022;15(18):6631. doi: 10.3390/en15186631. DOI
Yang C, Wu Z, Li X, Fars A. Risk-constrained stochastic scheduling for energy hub: Integrating renewables, demand response, and electric vehicles. Energy. 2024;288:129680. doi: 10.1016/j.energy.2023.129680. DOI
Liu Y, Liu X, Li X, Yuan H, Xue Y. Model predictive control-based dual-mode operation of an energy-stored quasi-Z-source photovoltaic power system. IEEE Trans. Ind. Electron. 2023;70(9):9169–9180. doi: 10.1109/TIE.2022.3215451. DOI
Hu F, Mou S, Wei S, Qiu L, Hu H, Zhou H. Research on the evolution of China's photovoltaic technology innovation network from the perspective of patents. Energy Strategy Rev. 2024;51:101309. doi: 10.1016/j.esr.2024.101309. DOI
Shirkhani M, Tavoosi J, Danyali S, Sarvenoee AK, Abdali A, Mohammadzadeh A, Zhang C. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep. 2023;10:368–380. doi: 10.1016/j.egyr.2023.06.022. DOI
Yao L, Wang Y, Xiao X. Concentrated solar power plant modeling for power system studies. IEEE Trans. Power Syst. 2023 doi: 10.1109/TPWRS.2023.3301996. DOI
Duan Y, Zhao Y, Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023;34:101004. doi: 10.1016/j.segan.2023.101004. DOI
Panda, S. et al. A comprehensive review on demand side management and market design for renewable energy support and integration. Energy Rep. 10, 2228–2250 ISSN 2352-4847 10.1016/j.egyr.2023.09.049 (2023).
Gupta, S. et al. Estimation of solar radiation with consideration of terrestrial losses at a selected location—A review. Sustainability15, 9962 10.3390/su15139962; 10.1049/cth2.12504 (2023).
Khelifi R, Guermoui M, Rabehi A, Taallah A, Zoukel A, Ghoneim SSM, Bajaj M, AboRas KM, Zaitsev I. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy. Int. Trans. Electr. Energy Syst. 2023;2023(6413716):14. doi: 10.1155/2023/6413716. DOI
Ssekulima EB, Anwar MB, AlHinai A, ElMoursi MS. “Wind speed and solar irradiance forecasting techniques for enhanced renewable energy integration with the grid: a review. IET Renew. Power Gener. 2016;10(7):885–989. doi: 10.1049/iet-rpg.2015.0477. DOI
Sharma H, Mishra S, Dhillon J, Sharma NK, Bajaj M, Tariq R, Rehman AU, Shafiq M, Hamam H. Feasibility of solar grid-based industrial virtual power plant for optimal energy scheduling: A case of Indian Power Sector. Energies. 2022;15(3):752. doi: 10.3390/en15030752. DOI
Chandra S, Yadav A, Khan MAR, Pushkarna M, Bajaj M, Sharma NK. Influence of artificial and natural cooling on performance parameters of a solar P.V. system: A case study. IEEE Access. 2021;9:29449–29457. doi: 10.1109/ACCESS.2021.3058779. DOI
Song X, Wang H, Ma X, Yuan X, Wu X. Robust model predictive current control for a nine-phase open-end winding PMSM with high computational efficiency. IEEE Trans. Power Electron. 2023;38(11):13933–13943. doi: 10.1109/TPEL.2023.3309308. DOI
Zhang X, Gong L, Zhao X, Li R, Yang L, Wang B. Voltage and frequency stabilization control strategy of virtual synchronous generator based on small signal model. Energy Rep. 2023;9:583–590. doi: 10.1016/j.egyr.2023.03.071. DOI
Li S, Zhao X, Liang W, Hossain MT, Zhang Z. A fast and accurate calculation method of line breaking power flow based on Taylor expansion. Front. Energy Res. 2022 doi: 10.3389/fenrg.2022.943946. DOI
Mellit A, Eleuch H, Benghanem M, Elaoun C, Pavan AM. An adaptive model for predicting of global, direct and diffuse hourly solar irradiance. Energy Convers. Manag. 2010;51(4):771–782. doi: 10.1016/j.enconman.2009.10.034. DOI
Li S, Wang F, Ouyang L, Chen X, Yang Z, Rozga P, Fofana I. Differential low-temperature AC breakdown between synthetic ester and mineral oils: Insights from both molecular dynamics and quantum mechanics. IEEE Trans. Dielectr. Electr. Insulat. 2023 doi: 10.1109/TDEI.2023.3345299. DOI
Li X, Aftab S, Hussain S, Kabir F, Henaish AMA, Al-Sehemi AG. Dimensional diversity (0D, 1D, 2D, 3D) in Perovskite solar cells: Exploring the potential of mix-dimensional integrations. J. Mater. Chem. A. 2024 doi: 10.1039/D3TA06953B. DOI
Mazumdar BM, Saquib M, Das AK. An empirical model for ramp analysis of utility-scale solar PV power. Solar Energy. 2014;107:44–49. doi: 10.1016/j.solener.2014.05.027. DOI
Bajaj M, Singh AK. Grid integrated renewable DG systems: A review of power quality challenges and state-of-the-art mitigation techniques. Int. J. Energy Res. 2020;44:26–69. doi: 10.1002/er.4847. DOI
Hussen, S., Ayalew, F., Bajaj, M., Sharma, N.K., Jurado, F. & Kamel, K. An overview of recent advances in energy storage for solar power systems. In IEEE International Conference on Automatica—Congreso de la Asociación Chilena de Control Automático, Curicó Chile, October 24–28 (2022).
Dashtdar M, Bajaj M, Hosseinimoghadam SMS. Design of optimal energy management system in a residential microgrid based on smart control. Smart Sci. 2021 doi: 10.1080/23080477.2021.1949882. DOI
Lin X, Liu Y, Yu J, Yu R, Zhang J, Wen H. Stability analysis of three-phase grid-connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 2022;142:108244. doi: 10.1016/j.ijepes.2022.108244. DOI
Song, J., Mingotti, A., Zhang, J., Peretto, L., & Wen, H. Accurate damping factor and frequency estimation for damped real-valued sinusoidal signals. IEEE Trans. Instrum. Meas. 10.1109/TIM.2022.3220300 (2022).
Alzahrani A, Shamsi P, Dagli C, Ferdowsi M. Solar irradiance forecasting using deep neural networks. Proc. Comput. Sci. 2017;114:304–313. doi: 10.1016/j.procs.2017.09.045. DOI
Mohanty, S. et al. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep. 8, 12466–12490. ISSN 2352–4847 10.1016/j.egyr.2022.09.023 (2022).
Gao Y, Doppelbauer M, Ou J, Qu R. Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J. Emerg. Sel. Top. Power Electron. 2021;10(2):1671–1682. doi: 10.1109/JESTPE.2021.3105557. DOI
Zhang X, Wang Z, Lu Z. Multi-objective load dispatch for microgrid with electric vehicles using modified gravitational search and particle swarm optimization algorithm. Appl. Energy. 2022;306:118018. doi: 10.1016/j.apenergy.2021.118018. DOI
Shao B, Xiao Q, Xiong L, Wang L, Yang Y, Chen Z, Guerrero JM. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst. 2023;145:108645. doi: 10.1016/j.ijepes.2022.108645. DOI
Shen Y, Xie J, He T, Yao L, Xiao Y. CEEMD-fuzzy control energy management of hybrid energy storage systems in electric vehicles. IEEE Trans. Energy Convers. 2023 doi: 10.1109/TEC.2023.3306804. DOI
Alfaris, F., Alzahrani, A. & Kimball, J. W. Stochastic model for PV sensor array data. In 2014 International Conference on Renewable Energy Research and Application (ICRERA), Milwaukee, WI, USA. 798–803 10.1109/ICRERA.2014.7016495 (IEEE, 2014).
Yang Y, Zhang Z, Zhou Y, Wang C, Zhu H. Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microwave Theory Tech. 2023;71(2):907–915. doi: 10.1109/TMTT.2022.3205612. DOI
Wang Y, Xia F, Wang Y, Xiao X. Harmonic transfer function based single-input single-output impedance modeling of LCCHVDC systems. J. Mod. Power Syst. Clean Energy. 2023 doi: 10.35833/MPCE.2023.000093. DOI
Anil Kumar, B. et al. A novel framework for enhancing the power quality of electrical vehicle battery charging based on a modified Ferdowsi converter. Energy Rep.10, 2394–2416. ISSN 2352–4847 10.1016/j.egyr.2023.09.070 (2023).
Rekioua D, Mokrani Z, Kakouche K, et al. Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries. Sci. Rep. 2023;13:21830. doi: 10.1038/s41598-023-49067-4. PubMed DOI PMC
Fu C, Yuan H, Xu H, Zhang H, Shen L. TMSO-Net: Texture adaptive multi-scale observation for light field image depth estimation. J. Vis. Commun. Image Represent. 2023;90:103731. doi: 10.1016/j.jvcir.2022.103731. DOI
Chen Y, Zhu L, Hu Z, Chen S, Zheng X. Risk propagation in multilayer heterogeneous network of coupled system of large engineering project. J. Manag. Eng. 2022;38(3):4022003. doi: 10.1061/(ASCE)ME.1943-5479.0001022. DOI
Shboul B, et al. A new ANN model for hourly solar radiation and wind speed prediction: A case study over the north & south of the Arabian Peninsula. Sustain. Energy Technol. Assess. 2021;46:101248. doi: 10.1016/j.seta.2021.101248. DOI
Dolara A, Leva S, Manzolini G. Comparison of different physical models for PV power output prediction. Solar Energy. 2015;119:83–99. doi: 10.1016/j.solener.2015.06.017. DOI
De Soto W, Klein SA, Beckman WA. Improvement and validation of a model for photovoltaic array performance. Solar Energy. 2006;80(1):78–88. doi: 10.1016/j.solener.2005.06.010. DOI
Li P, Hu J, Qiu L, Zhao Y, Ghosh BK. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 2022;9(1):356–366. doi: 10.1109/TCNS.2021.3104103. DOI
Hou X, Xin L, Fu Y, Na Z, Gao G, Liu Y, Chen T. A self-powered biomimetic mouse whisker sensor (BMWS) aiming at terrestrial and space objects perception. Nano Energy. 2023;118:109034. doi: 10.1016/j.nanoen.2023.109034. DOI
Luo, J., Zhuo, W., & Xu, B. A deep neural network-based assistive decision method for financial risk prediction in carbon trading market. J. Circuits Syst. Comput. 10.1142/S0218126624501536 (2023).
Hassan J. ARIMA and regression models for prediction of daily and monthly clearness index. Renew. Energy. 2014;68:421–427. doi: 10.1016/j.renene.2014.02.016. DOI
Phinikarides, A. et al. ARIMA modeling of the performance of different photovoltaic technologies. In 2013 IEEE 39th Photovoltaic Specialists Conference (PVSC), Tampa, FL, USA. 0797–0801 10.1109/PVSC.2013.6744268 (IEEE, 2013).
David M, Ramahatana F, Trombe PJ, Lauret P. Probabilistic forecasting of the solar irradiance with recursive ARMA and GARCH models. Solar Energy. 2016;133:55–72. doi: 10.1016/j.solener.2016.03.064. DOI
Gana, N. N. & Akpootu, D. O. Angstrom Type Empirical Correlation for Estimating Global Solar Radiation in North-Eastern Nigeria.
Veldhuis AJ, Nobre AM, Peters IM, Reindl T, Rüther R, Reinders AHME. An empirical model for rack-mounted PV module temperatures for Southeast Asian locations evaluated for minute time scales. IEEE J. Photovolt. 2015;5(3):774–782. doi: 10.1109/JPHOTOV.2015.2405762. DOI
Alzahrani A, Shamsi P, Ferdowsi M, Dagli CH. Chaotic behavior in high-gain interleaved dc–dc converters. Proc. Comput. Sci. 2017;114:408–416. doi: 10.1016/j.procs.2017.09.002. DOI
Alzahrani, A., Shamsi, P. & Ferdowsi, M. Analysis and design of bipolar Dickson DC–DC converter. In 2017 IEEE Power and Energy Conference at Illinois (PECI), Champaign, IL, USA. 1–6 10.1109/PECI.2017.7935733 (IEEE, 2017).
Alzahrani, A., Shamsi, P. & Ferdowsi, M. A novel interleaved non-isolated high-gain DC–DC boost converter with Greinacher voltage multiplier cells. In 2017 IEEE 6th International Conference on Renewable Energy Research and Applications (ICRERA), San Diego, CA. 222–227 10.1109/ICRERA.2017.8191270 (IEEE, 2017).
LeCun Y, Bengio Y, Hinton G. Deep learning. Nature. 2015;521(7553):436–444. doi: 10.1038/nature14539. PubMed DOI
Zhang L, Yin Q, Zhu W, Lyu L, Jiang L, Koh LH, Cai G. Research on the orderly charging and discharging mechanism of electric vehicles considering travel characteristics and carbon quota. IEEE Trans. Transport. Electrif. 2023 doi: 10.1109/TTE.2023.3296964. DOI
Zhang, L., Sun, C., Cai, G., & Koh, L. H. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. eTransportation18, 100262 10.1016/j.etran.2023.100262 (2023).
Mo J, Yang H. Sampled value attack detection for busbar differential protection based on a negative selection immune system. J. Mod. Power Syst. Clean Energy. 2023;11(2):421–433. doi: 10.35833/MPCE.2021.000318. DOI
Yang M, Wang Y, Xiao X, Li Y. A robust damping control for virtual synchronous generators based on energy reshaping. IEEE Trans. Energy Convers. 2023;38(3):2146–2159. doi: 10.1109/TEC.2023.3260244. DOI
Yan Z, Hu Q, Jiang F, Lin S, Li R, Chen S. Mechanism and technology evaluation of a novel alternating-arc-based directed energy deposition method through polarity-switching self-adaptive shunt. Addit. Manuf. 2023;67:103504. doi: 10.1016/j.addma.2023.103504. DOI
Wang Z, Li J, Hu C, Li X, Zhu Y. Hybrid energy storage system and management strategy for motor drive with high torque overload. J. Energy Storage. 2024;75:109432. doi: 10.1016/j.est.2023.109432. DOI
Koumi Ngoh, S., Ayina, O., Monkam, L. & Kemajou, A. Estimation of the Global Solar Radiation Under Sudan-Type Tropical Climate Using Artificial Neural Network Model. 22–33 (2013).
Voyant C, Haurant P, Muselli M, Paoli C, Nivet M-L. Time series modeling and large scale global solar radiation forecasting from geostationary satellites data. Solar Energy. 2014;102:131–142. doi: 10.1016/j.solener.2014.01.017. DOI
Kalogirou SA. Artificial neural networks in renewable energy systems applications: A review. Renew. Sustain. Energy Rev. 2001;5(4):373–401. doi: 10.1016/S1364-0321(01)00006-5. DOI
Kalogirou, S. & Senc, A. Artificial intelligence techniques in solar energy applications. In Solar Collectors and Panels, Theory and Applications (Manyala, R. ed.) 10.5772/10343 (Sciyo, 2010).
Benghanem M. Artificial intelligence techniques for prediction of solar radiation data: A review. IJRET. 2012;3(2):189. doi: 10.1504/IJRET.2012.045626. DOI
Hontoria L, Aguilera J, Zufiria P. Generation of hourly irradiation synthetic series using the neural network multilayer perceptron. Solar Energy. 2002;72(5):441–446. doi: 10.1016/S0038-092X(02)00010-5. DOI
Hontoria, L., Aguilera, J., Riesco, J. & Zufiria, P. Recurrent Neural Supervised Models for Generating Solar Radiation Synthetic Series.
Voyant C, Muselli M, Paoli C, Nivet M-L. Optimization of an artificial neural network dedicated to the multivariate forecasting of daily global radiation. Energy. 2011;36(1):348–359. doi: 10.1016/j.energy.2010.10.032. DOI
Mellit A, Pavan AM. A 24-h forecast of solar irradiance using artificial neural network: Application for performance prediction of a grid-connected PV plant at Trieste, Italy. Solar Energy. 2010;84(5):807–821. doi: 10.1016/j.solener.2010.02.006. DOI
Premalatha, N. & Valan Arasu, A. Prediction of solar radiation for solar systems by using ANN models with different back propagation algorithms. J. Appl. Res. Technol. 14(3), 206–214 10.1016/j.jart.2016.05.001 (2016).
Mohamed ZE. Using the artificial neural networks for prediction and validating solar radiation. J. Egypt. Math. Soc. 2019;27(1):47. doi: 10.1186/s42787-019-0043-8. DOI
Bouchouicha K, Hassan MA, Bailek N, Aoun N. Estimating the global solar irradiation and optimizing the error estimates under Algerian desert climate. Renew. Energy. 2019;139:844–858. doi: 10.1016/j.renene.2019.02.071. DOI
Notton G, Paoli C, Ivanova L, Vasileva S, Nivet ML. Neural network approach to estimate 10-min solar global irradiation values on tilted planes. Renew. Energy. 2013;50:576–584. doi: 10.1016/j.renene.2012.07.035. DOI
Akkaya, B. Comparison of multi-class classification algorithms on early diagnosis of heart diseases. In y-BIS 2019 Conference: Recent Advances in Data Science and Business Analytics (2019). https://www.academia.edu/41940316/Comparison_of_Multi_class_Classification_Algorithms_on_Early_Diagnosis_of_Heart_Diseases. Accessed 7 June 2023.
Dalar, A. Z., Kocadagli, A. Y. & Kose, A. M. Ozan Kocadagli Ali Erkoc Bilge Baser Nihan Acar Denizli Tahir Ekin LOC of y-BIS (2019).
Capizzi G, Napoli C, Bonanno F. Innovative second-generation wavelets construction with recurrent neural networks for solar radiation forecasting. IEEE Trans. Neural Netw. Learn. Syst. 2012;23(11):1805–1815. doi: 10.1109/TNNLS.2012.2216546. PubMed DOI
Faceira, J., Afonso, P. & Salgado, P. Prediction of solar radiation using artificial neural networks. In CONTROLO’2014—Proceedings of the 11th Portuguese Conference on Automatic Control (Moreira, A. P., Matos, A. & Veiga, G. eds.) Lecture Notes in Electrical Engineering. Vol. 321. 397–406 10.1007/978-3-319-10380-8_38 (Springer, 2015).
Mellit A, Benghanem M, Arab AH, Guessoum A. A simplified model for generating sequences of global solar radiation data for isolated sites: Using artificial neural network and a library of Markov transition matrices approach. Solar Energy. 2005;79(5):469–482. doi: 10.1016/j.solener.2004.12.006. DOI
Cao JC, Cao SH. Study of forecasting solar irradiance using neural networks with preprocessing sample data by wavelet analysis. Energy. 2006;31(15):3435–3445. doi: 10.1016/j.energy.2006.04.001. DOI
Khorasanizadeh H, Mohammadi K. Prediction of daily global solar radiation by day of the year in four cities located in the sunny regions of Iran. Energy Convers. Manag. 2013;76:385–392. doi: 10.1016/j.enconman.2013.07.073. DOI
Hassan G, Youssef E, Ali M, Mohamed Z, Hanafy A. Evaluation of different sunshine-based models for predicting global solar radiation—Case study: New Borg El-Arab city, Egypt. Therm. Sci. 2018;22(2):979–992. doi: 10.2298/TSCI160803085H. DOI