Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources

. 2024 Aug 19 ; 14 (1) : 19207. [epub] 20240819

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid39160194
Odkazy

PubMed 39160194
PubMed Central PMC11333743
DOI 10.1038/s41598-024-70336-3
PII: 10.1038/s41598-024-70336-3
Knihovny.cz E-zdroje

The growing integration of renewable energy sources into grid-connected microgrids has created new challenges in power generation forecasting and energy management. This paper explores the use of advanced machine learning algorithms, specifically Support Vector Regression (SVR), to enhance the efficiency and reliability of these systems. The proposed SVR algorithm leverages comprehensive historical energy production data, detailed weather patterns, and dynamic grid conditions to accurately forecast power generation. Our model demonstrated significantly lower error metrics compared to traditional linear regression models, achieving a Mean Squared Error of 2.002 for solar PV and 3.059 for wind power forecasting. The Mean Absolute Error was reduced to 0.547 for solar PV and 0.825 for wind scenarios, and the Root Mean Squared Error (RMSE) was 1.415 for solar PV and 1.749 for wind power, showcasing the model's superior accuracy. Enhanced predictive accuracy directly contributes to optimized resource allocation, enabling more precise control of energy generation schedules and reducing the reliance on external power sources. The application of our SVR model resulted in an 8.4% reduction in overall operating costs, highlighting its effectiveness in improving energy management efficiency. Furthermore, the system's ability to predict fluctuations in energy output allowed for adaptive real-time energy management, reducing grid stress and enhancing system stability. This approach led to a 10% improvement in the balance between supply and demand, a 15% reduction in peak load demand, and a 12% increase in the utilization of renewable energy sources. Our approach enhances grid stability by better balancing supply and demand, mitigating the variability and intermittency of renewable energy sources. These advancements promote a more sustainable integration of renewable energy into the microgrid, contributing to a cleaner, more resilient, and efficient energy infrastructure. The findings of this research provide valuable insights into the development of intelligent energy systems capable of adapting to changing conditions, paving the way for future innovations in energy management. Additionally, this work underscores the potential of machine learning to revolutionize energy management practices by providing more accurate, reliable, and cost-effective solutions for integrating renewable energy into existing grid infrastructures.

Zobrazit více v PubMed

Rao, S. N. V. B. DOI

I.A. Saifi, A. Haque, M. Amir, V.S. Bharath Kurukuru, intelligent islanding classification with MLPNN for hybrid distributed energy generations in microgrid system, in: 2023 Int. Conf. Intell. Innov. Technol. Comput. Electr. Electron., IEEE, 2023: pp 982–987. 10.1109/IITCEE57236.2023.10091089

Liu, Z., Zhao, Y., Wang, Q., Xing, H. & Sun, J. Modeling and assessment of carbon emissions in additive-subtractive integrated hybrid manufacturing based on energy and material analysis. DOI

Khelifi, R. DOI

Pachauri, N. DOI

Abraham, D. S. DOI

Mohsen, S. DOI

Khosravi, N. DOI

Choudhury, S. DOI

Kong, G., Wu, D. & Wei, Y. Experimental and numerical investigations on the energy and structural performance of a full-scale energy utility tunnel. DOI

Feng, Y., Chen, J. & Luo, J. Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility. DOI

Azaroual, M. DOI

Sahoo, G. K., Choudhury, S., Rathore, R. S. & Bajaj, M. A novel prairie dog-based meta-heuristic optimization algorithm for improved control, better transient response, and power quality enhancement of hybrid microgrids. PubMed DOI PMC

Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. K. A distributed economic dispatch strategy for power-water networks. DOI

Q. Meng, S. Hussain, F. Luo, Z. Wang, X. Jin, An online reinforcement learning-based energy management strategy for microgrids with centralized control, IEEE Trans. Ind. Appl. (2024) 1–10. 10.1109/TIA.2024.3430264.

P. Bojek, https://www.iea.org/energy-system/renewables/solar-pv, (n.d.).

Sahoo, G. K., Choudhury, S., Rathore, R. S., Bajaj, M. & Dutta, A. K. Scaled Conjugate-Artificial Neural Network-Based novel framework for enhancing the power quality of Grid-Tied microgrid systems. DOI

Panda, S. DOI

Shirkhani, M. DOI

Wang, S. DOI

Mohammad, A. DOI

Zhang, J. DOI

Yang, J., Xu, W., Ma, K. & Li, C. A three-stage multi-energy trading strategy based on P2P trading mode. DOI

Ma, K., Yu, Y., Yang, B. & Yang, J. Demand-side energy management considering price oscillations for residential building heating and ventilation systems. DOI

Ju, Y., Liu, W., Zhang, Z. & Zhang, R. Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints. DOI

Rekioua, D. PubMed DOI PMC

Guermoui, M. PubMed DOI PMC

Mohammad, A., Zuhaib, M. & Ashraf, I. An optimal home energy management system with integration of renewable energy and energy storage with home to grid capability. DOI

Mfetoum, I. M. PubMed DOI PMC

Nagarajan, K. PubMed DOI PMC

Rajagopalan, A. DOI

Amoussou, I., Tanyi, E., Agajie, T., Khan, B. & Bajaj, M. Optimal sizing and location of grid-interfaced PV, PHES, and ultra capacitor systems to replace LFO and HFO based power generations. PubMed DOI PMC

Rekioua, D. PubMed DOI PMC

Agajie, E. F. PubMed DOI PMC

Agajie, T. F. PubMed DOI PMC

Zuhaib, M., Rihan, M. & Saeed, M. T. A novel method for locating the source of sustained oscillation in power system using synchrophasors data. DOI

Zuhaib, M., Khan, H. A. & Rihan, M. Performance analysis of a utility-scale grid integrated solar farm considering physical and environmental factors. DOI

Aggarwal, S., Kumar Singh, A., Singh Rathore, R., Bajaj, M. & Gupta, D. Revolutionizing load management: A novel technique to diminish the impact of electric vehicle charging stations on the electricity grid. DOI

Davoudkhani, I. F., Zare, P., Abdelaziz, A. Y., Bajaj, M. & Tuka, M. B. Robust load-frequency control of islanded urban microgrid using 1PD-3DOF-PID controller including mobile EV energy storage. PubMed DOI PMC

Molu, R. J. J. PubMed DOI PMC

Jacques Molu, R. J. DOI

Rajagopalan, A. PubMed DOI PMC

Amoussou, I. PubMed DOI PMC

Tadj, M. PubMed DOI PMC

Khosravi, N. PubMed DOI PMC

Prasad, T. N. DOI

Awan, M. M. A., Javed, M. Y., Asghar, A. B. & Ejsmont, K. Economic integration of renewable and conventional power sources—A case study. DOI

Sharma, S. DOI

Sufyan, M. A., Zuhaib, M. & Rihan, M. An investigation on the application and challenges for wide area monitoring and control in smart grid. DOI

Khan, H. A., Zuhaib, M. & Rihan, M. Analysis of varying PV penetration level on harmonic content of active distribution system with a utility scale grid integrated solar farm. DOI

Abdalla, A. N. DOI

Dashtdar, M., Bajaj, M. & Hosseinimoghadam, S. M. S. Design of optimal energy management system in a residential microgrid based on smart control. DOI

Dashtdar, M., Nazir, M. S., Hosseinimoghadam, S. M. S., Bajaj, M. & Goud, B. S. Improving the sharing of active and reactive power of the islanded microgrid based on load voltage control. DOI

Punna, S. & Manthati, U. B. Optimum design and analysis of a dynamic energy management scheme for HESS in renewable power generation applications. DOI

I.S. 1547-2003, IEEE standard for interconnecting distributed resources with electric power systems, IEEENew York, NY, USA (2003) 1–28.

I.S. 1547-2018, IEEE Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces, IEEE New York, NY, USA (2018) 1–138. 10.1109/IEEESTD.2018.8332112.

H.H. Coban, M. Bajaj, V. Blazek, F. Jurado, S. Kamel, Forecasting energy consumption of electric vehicles, in: 2023 5th Glob. Power, Energy Commun. Conf., IEEE, 2023: pp. 120–124. 10.1109/GPECOM58364.2023.10175761

Panda, S. DOI

Abdelkader, S. DOI

Khan, H. A., Zuhaib, M. & Rihan, M. A review on voltage and frequency contingencies mitigation technologies in a grid with renewable energy integration. DOI

Mobin, N., Rihan, M. & Zuhaib, M. Selection of an efficient linear state estimator for unified real time dynamic state estimation in Indian smart grid. DOI

Panda, S. DOI

Bajaj, M. & Singh, A. K. Grid integrated renewable DG systems: A review of power quality challenges and state-of-the-art mitigation techniques. DOI

I. Theubou Tameghe, Tommy Andy & Wamkeue, René & Kamwa, Modelling and simulation of a flywheel energy storage system for microgrids power plant applications, in: EIC Clim. Chang. Technol. Conf. 2015, 2015: pp 1–12.

Tightiz, L., Yang, H. & Bevrani, H. An interoperable communication framework for grid frequency regulation support from microgrids. PubMed DOI PMC

Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J. & Guerrero, J. Smart inverters for microgrid applications: A review. DOI

Li, Q., Gao, M., Lin, H., Chen, Z. & Chen, M. MAS-based distributed control method for multi-microgrids with high-penetration renewable energy. DOI

Hirsch, A., Parag, Y. & Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. DOI

Ruiz Duarte, J. L. & Fan, N. Operation of a power grid with embedded networked microgrids and onsite renewable technologies. DOI

Zia, M. F., Elbouchikhi, E. & Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. DOI

Roslan, M. F., Hannan, M. A., Ker, P. J. & Uddin, M. N. Microgrid control methods toward achieving sustainable energy management. DOI

Ali, S. DOI

Fontenot, H. & Dong, B. Modeling and control of building-integrated microgrids for optimal energy management – A review. DOI

Al-Ismail, F. S. DC microgrid planning, operation, and control: A comprehensive review. DOI

Meng, L. DOI

Parhizi, S., Lotfi, H., Khodaei, A. & Bahramirad, S. State of the art in research on microgrids: A review. DOI

García Vera, Y. E., Dufo-López, R. & Bernal-Agustín, J. L. Energy management in microgrids with renewable energy sources: A literature review. DOI

Elmouatamid, A. DOI

Khavari, F., Badri, A. & Zangeneh, A. Energy management in multi-microgrids considering point of common coupling constraint. DOI

M.E. Gamez Urias, E.N. Sanchez, L.J. Ricalde, Electrical Microgrid Optimization via a New Recurrent Neural Network, IEEE Syst. J. 9 (2015) 945–953. 10.1109/JSYST.2014.2305494.

Minchala-Avila, L. I., Garza-Castanon, L., Zhang, Y. & Ferrer, H. J. A. Optimal energy management for stable operation of an islanded microgrid. DOI

Arcos-Aviles, D. DOI

Olivares, D. E., Canizares, C. A. & Kazerani, M. A centralized energy management system for isolated microgrids. DOI

Joshi, A., Capezza, S., Alhaji, A. & Chow, M.-Y. Survey on AI and machine learning techniques for microgrid energy management systems. DOI

Zhou, Q. DOI

Suresh, V., Janik, P., Guerrero, J. M., Leonowicz, Z. & Sikorski, T. Microgrid energy management system with embedded deep learning forecaster and combined optimizer. DOI

Ji, Y., Wang, J., Xu, J. & Li, D. Data-driven online energy scheduling of a microgrid based on deep reinforcement learning. DOI

Fotopoulou, M., Rakopoulos, D. & Blanas, O. Day ahead optimal dispatch schedule in a smart grid containing distributed energy resources and electric vehicles. PubMed DOI PMC

Thompson, M. J., Sun, H. & Jiang, J. Blockchain-based peer-to-peer energy trading method.

Samadi, E., Badri, A. & Ebrahimpour, R. Decentralized multi-agent based energy management of microgrid using reinforcement learning. DOI

Patel, S., Murari, K. & Kamalasadan, S. Distributed control of distributed energy resources in active power distribution system for local power balance with optimal spectral clustering. DOI

Eseye, A. T., Lehtonen, M., Tukia, T., Uimonen, S. & John Millar, R. Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems. DOI

Zhang, L., Cheng, L., Alsokhiry, F. & Mohamed, M. A. A novel stochastic blockchain-based energy management in smart cities using V2S and V2G. DOI

Mohamed, M. A. DOI

Tan, H., Li, Z., Wang, Q. & Mohamed, M. A. A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses. DOI

Gu, S. DOI

Mohanty, S. DOI

Meena, C. DOI

Kumar, R. S., Raghav, L. P., Raju, D. K. & Singh, A. R. Intelligent demand side management for optimal energy scheduling of grid connected microgrids. DOI

M. Awad, R. Khanna, Support vector regression, in: Effic. Learn. Mach., Apress, Berkeley, CA, 2015: pp 67–80. 10.1007/978-1-4302-5990-9_4.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...