Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
39160194
PubMed Central
PMC11333743
DOI
10.1038/s41598-024-70336-3
PII: 10.1038/s41598-024-70336-3
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Cognitive science, Distributed generation, Energy management, Microgrid, Optimization, Predictive modeling, Renewable energy, Support vector regression,
- Publikační typ
- časopisecké články MeSH
The growing integration of renewable energy sources into grid-connected microgrids has created new challenges in power generation forecasting and energy management. This paper explores the use of advanced machine learning algorithms, specifically Support Vector Regression (SVR), to enhance the efficiency and reliability of these systems. The proposed SVR algorithm leverages comprehensive historical energy production data, detailed weather patterns, and dynamic grid conditions to accurately forecast power generation. Our model demonstrated significantly lower error metrics compared to traditional linear regression models, achieving a Mean Squared Error of 2.002 for solar PV and 3.059 for wind power forecasting. The Mean Absolute Error was reduced to 0.547 for solar PV and 0.825 for wind scenarios, and the Root Mean Squared Error (RMSE) was 1.415 for solar PV and 1.749 for wind power, showcasing the model's superior accuracy. Enhanced predictive accuracy directly contributes to optimized resource allocation, enabling more precise control of energy generation schedules and reducing the reliance on external power sources. The application of our SVR model resulted in an 8.4% reduction in overall operating costs, highlighting its effectiveness in improving energy management efficiency. Furthermore, the system's ability to predict fluctuations in energy output allowed for adaptive real-time energy management, reducing grid stress and enhancing system stability. This approach led to a 10% improvement in the balance between supply and demand, a 15% reduction in peak load demand, and a 12% increase in the utilization of renewable energy sources. Our approach enhances grid stability by better balancing supply and demand, mitigating the variability and intermittency of renewable energy sources. These advancements promote a more sustainable integration of renewable energy into the microgrid, contributing to a cleaner, more resilient, and efficient energy infrastructure. The findings of this research provide valuable insights into the development of intelligent energy systems capable of adapting to changing conditions, paving the way for future innovations in energy management. Additionally, this work underscores the potential of machine learning to revolutionize energy management practices by providing more accurate, reliable, and cost-effective solutions for integrating renewable energy into existing grid infrastructures.
Department of Electrical Engineering Graphic Era Dehradun India
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Rao, S. N. V. B. et al. Day-ahead load demand forecasting in urban community cluster microgrids using machine learning methods. Energies15, 6124. 10.3390/en15176124 (2022).10.3390/en15176124 DOI
I.A. Saifi, A. Haque, M. Amir, V.S. Bharath Kurukuru, intelligent islanding classification with MLPNN for hybrid distributed energy generations in microgrid system, in: 2023 Int. Conf. Intell. Innov. Technol. Comput. Electr. Electron., IEEE, 2023: pp 982–987. 10.1109/IITCEE57236.2023.10091089
Liu, Z., Zhao, Y., Wang, Q., Xing, H. & Sun, J. Modeling and assessment of carbon emissions in additive-subtractive integrated hybrid manufacturing based on energy and material analysis. Int. J. Precis. Eng. Manuf. Technol.11, 799–813. 10.1007/s40684-023-00588-3 (2024).10.1007/s40684-023-00588-3 DOI
Khelifi, R. et al. Short-term PV power forecasting using a hybrid TVF-EMD-ELM strategy. Int. Trans. Electr. Energy Syst.2023, 1–14. 10.1155/2023/6413716 (2023).10.1155/2023/6413716 DOI
Pachauri, N. et al. A robust fractional-order control scheme for PV-penetrated grid-connected microgrid. Mathematics11, 1283. 10.3390/math11061283 (2023).10.3390/math11061283 DOI
Abraham, D. S. et al. Fuzzy-based efficient control of Dc microgrid configuration for PV-energized EV charging station. Energies16, 2753. 10.3390/en16062753 (2023).10.3390/en16062753 DOI
Mohsen, S. et al. Efficient artificial neural network for smart grid stability prediction. Int. Trans. Electr. Energy Syst.2023, 1–13. 10.1155/2023/9974409 (2023).10.1155/2023/9974409 DOI
Khosravi, N. et al. A novel control approach to improve the stability of hybrid AC/DC microgrids. Appl. Energy344, 121261. 10.1016/j.apenergy.2023.121261 (2023).10.1016/j.apenergy.2023.121261 DOI
Choudhury, S. et al. Energy management and power quality improvement of microgrid system through modified water wave optimization. Energy Rep.9, 6020–6041. 10.1016/j.egyr.2023.05.068 (2023).10.1016/j.egyr.2023.05.068 DOI
Kong, G., Wu, D. & Wei, Y. Experimental and numerical investigations on the energy and structural performance of a full-scale energy utility tunnel. Tunn. Undergr. Sp. Technol.139, 105208. 10.1016/j.tust.2023.105208 (2023).10.1016/j.tust.2023.105208 DOI
Feng, Y., Chen, J. & Luo, J. Life cycle cost analysis of power generation from underground coal gasification with carbon capture and storage (CCS) to measure the economic feasibility. Resour. Policy92, 104996. 10.1016/j.resourpol.2024.104996 (2024).10.1016/j.resourpol.2024.104996 DOI
Azaroual, M. et al. Optimal solution of peer-to-peer and peer-to-grid trading strategy sharing between prosumers with grid-connected photovoltaic/wind turbine/battery storage systems. Int. J. Energy Res.2023, 1–17. 10.1155/2023/6747936 (2023).10.1155/2023/6747936 DOI
Sahoo, G. K., Choudhury, S., Rathore, R. S. & Bajaj, M. A novel prairie dog-based meta-heuristic optimization algorithm for improved control, better transient response, and power quality enhancement of hybrid microgrids. Sensors23, 5973. 10.3390/s23135973 (2023). 10.3390/s23135973 PubMed DOI PMC
Li, P., Hu, J., Qiu, L., Zhao, Y. & Ghosh, B. K. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst.9, 356–366. 10.1109/TCNS.2021.3104103 (2022).10.1109/TCNS.2021.3104103 DOI
Q. Meng, S. Hussain, F. Luo, Z. Wang, X. Jin, An online reinforcement learning-based energy management strategy for microgrids with centralized control, IEEE Trans. Ind. Appl. (2024) 1–10. 10.1109/TIA.2024.3430264.
P. Bojek, https://www.iea.org/energy-system/renewables/solar-pv, (n.d.).
Sahoo, G. K., Choudhury, S., Rathore, R. S., Bajaj, M. & Dutta, A. K. Scaled Conjugate-Artificial Neural Network-Based novel framework for enhancing the power quality of Grid-Tied microgrid systems. Alexandria Eng. J.80, 520–541. 10.1016/j.aej.2023.08.081 (2023).10.1016/j.aej.2023.08.081 DOI
Panda, S. et al. A comprehensive review on demand side management and market design for renewable energy support and integration. Energy Rep.10, 2228–2250. 10.1016/j.egyr.2023.09.049 (2023).10.1016/j.egyr.2023.09.049 DOI
Shirkhani, M. et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep.10, 368–380. 10.1016/j.egyr.2023.06.022 (2023).10.1016/j.egyr.2023.06.022 DOI
Wang, S. et al. An identification method for anomaly types of active distribution network based on data mining. IEEE Trans. Power Syst.39, 5548–5560. 10.1109/TPWRS.2023.3288043 (2024).10.1109/TPWRS.2023.3288043 DOI
Mohammad, A. et al. Integration of electric vehicles and energy storage system in home energy management system with home to grid capability. Energies14, 8557. 10.3390/en14248557 (2021).10.3390/en14248557 DOI
Zhang, J. et al. A novel multiport transformer-less unified power flow controller. IEEE Trans. Power Electron.39, 4278–4290. 10.1109/TPEL.2023.3347900 (2024).10.1109/TPEL.2023.3347900 DOI
Yang, J., Xu, W., Ma, K. & Li, C. A three-stage multi-energy trading strategy based on P2P trading mode. IEEE Trans. Sustain. Energy14, 233–241. 10.1109/TSTE.2022.3208369 (2023).10.1109/TSTE.2022.3208369 DOI
Ma, K., Yu, Y., Yang, B. & Yang, J. Demand-side energy management considering price oscillations for residential building heating and ventilation systems. IEEE Trans. Ind. Inform.15, 4742–4752. 10.1109/TII.2019.2901306 (2019).10.1109/TII.2019.2901306 DOI
Ju, Y., Liu, W., Zhang, Z. & Zhang, R. Distributed three-phase power flow for AC/DC hybrid networked microgrids considering converter limiting constraints. IEEE Trans. Smart Grid13, 1691–1708. 10.1109/TSG.2022.3140212 (2022).10.1109/TSG.2022.3140212 DOI
Rekioua, D. et al. Optimization and intelligent power management control for an autonomous hybrid wind turbine photovoltaic diesel generator with batteries. Sci. Rep.13, 21830. 10.1038/s41598-023-49067-4 (2023). 10.1038/s41598-023-49067-4 PubMed DOI PMC
Guermoui, M. et al. An analysis of case studies for advancing photovoltaic power forecasting through multi-scale fusion techniques. Sci. Rep.14, 6653. 10.1038/s41598-024-57398-z (2024). 10.1038/s41598-024-57398-z PubMed DOI PMC
Mohammad, A., Zuhaib, M. & Ashraf, I. An optimal home energy management system with integration of renewable energy and energy storage with home to grid capability. Int. J. Energy Res.46, 8352–8366. 10.1002/er.7735 (2022).10.1002/er.7735 DOI
Mfetoum, I. M. et al. A multilayer perceptron neural network approach for optimizing solar irradiance forecasting in Central Africa with meteorological insights. Sci. Rep.14, 3572. 10.1038/s41598-024-54181-y (2024). 10.1038/s41598-024-54181-y PubMed DOI PMC
Nagarajan, K. et al. Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management. Sci. Rep.14, 3091. 10.1038/s41598-024-53688-8 (2024). 10.1038/s41598-024-53688-8 PubMed DOI PMC
Rajagopalan, A. et al. Empowering power distribution: Unleashing the synergy of IoT and cloud computing for sustainable and efficient energy systems. Results Eng.21, 101949. 10.1016/j.rineng.2024.101949 (2024).10.1016/j.rineng.2024.101949 DOI
Amoussou, I., Tanyi, E., Agajie, T., Khan, B. & Bajaj, M. Optimal sizing and location of grid-interfaced PV, PHES, and ultra capacitor systems to replace LFO and HFO based power generations. Sci. Rep.14, 8591. 10.1038/s41598-024-57231-7 (2024). 10.1038/s41598-024-57231-7 PubMed DOI PMC
Rekioua, D. et al. Coordinated power management strategy for reliable hybridization of multi-source systems using hybrid MPPT algorithms. Sci. Rep.14, 10267. 10.1038/s41598-024-60116-4 (2024). 10.1038/s41598-024-60116-4 PubMed DOI PMC
Agajie, E. F. et al. Optimization of off-grid hybrid renewable energy systems for cost-effective and reliable power supply in Gaita Selassie Ethiopia. Sci. Rep.14, 10929. 10.1038/s41598-024-61783-z (2024). 10.1038/s41598-024-61783-z PubMed DOI PMC
Agajie, T. F. et al. Enhancing Ethiopian power distribution with novel hybrid renewable energy systems for sustainable reliability and cost efficiency. Sci. Rep.14, 10711. 10.1038/s41598-024-61413-8 (2024). 10.1038/s41598-024-61413-8 PubMed DOI PMC
Zuhaib, M., Rihan, M. & Saeed, M. T. A novel method for locating the source of sustained oscillation in power system using synchrophasors data. Prot. Control Mod. Power Syst.5, 30. 10.1186/s41601-020-00178-4 (2020).10.1186/s41601-020-00178-4 DOI
Zuhaib, M., Khan, H. A. & Rihan, M. Performance analysis of a utility-scale grid integrated solar farm considering physical and environmental factors. J. Inst. Eng. Ser. B102, 363–375. 10.1007/s40031-020-00500-6 (2021).10.1007/s40031-020-00500-6 DOI
Aggarwal, S., Kumar Singh, A., Singh Rathore, R., Bajaj, M. & Gupta, D. Revolutionizing load management: A novel technique to diminish the impact of electric vehicle charging stations on the electricity grid. Sustain. Energy Technol. Assess.65, 103784. 10.1016/j.seta.2024.103784 (2024).10.1016/j.seta.2024.103784 DOI
Davoudkhani, I. F., Zare, P., Abdelaziz, A. Y., Bajaj, M. & Tuka, M. B. Robust load-frequency control of islanded urban microgrid using 1PD-3DOF-PID controller including mobile EV energy storage. Sci. Rep.14, 13962. 10.1038/s41598-024-64794-y (2024). 10.1038/s41598-024-64794-y PubMed DOI PMC
Molu, R. J. J. et al. A techno-economic perspective on efficient hybrid renewable energy solutions in Douala, Cameroon’s grid-connected systems. Sci. Rep.14, 13590. 10.1038/s41598-024-64427-4 (2024). 10.1038/s41598-024-64427-4 PubMed DOI PMC
Jacques Molu, R. J. et al. Advancing short-term solar irradiance forecasting accuracy through a hybrid deep learning approach with Bayesian optimization. Results Eng.23, 102461. 10.1016/j.rineng.2024.102461 (2024).10.1016/j.rineng.2024.102461 DOI
Rajagopalan, A. et al. Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm. Sci. Rep.14, 15652. 10.1038/s41598-024-66644-3 (2024). 10.1038/s41598-024-66644-3 PubMed DOI PMC
Amoussou, I. et al. Enhancing residential energy access with optimized stand-alone hybrid solar-diesel-battery systems in Buea, Cameroon. Sci. Rep.14, 15543. 10.1038/s41598-024-66582-0 (2024). 10.1038/s41598-024-66582-0 PubMed DOI PMC
Tadj, M. et al. Improved chaotic Bat algorithm for optimal coordinated tuning of power system stabilizers for multimachine power system. Sci. Rep.14, 15124. 10.1038/s41598-024-65101-5 (2024). 10.1038/s41598-024-65101-5 PubMed DOI PMC
Khosravi, N. et al. Improvement of power quality parameters using modulated-unified power quality conditioner and switched-inductor boost converter by the optimization techniques for a hybrid AC/DC microgrid. Sci. Rep.12, 21675. 10.1038/s41598-022-26001-8 (2022). 10.1038/s41598-022-26001-8 PubMed DOI PMC
Prasad, T. N. et al. Power management in hybrid ANFIS PID based AC–DC microgrids with EHO based cost optimized droop control strategy. Energy Rep.8, 15081–15094. 10.1016/j.egyr.2022.11.014 (2022).10.1016/j.egyr.2022.11.014 DOI
Awan, M. M. A., Javed, M. Y., Asghar, A. B. & Ejsmont, K. Economic integration of renewable and conventional power sources—A case study. Energies15, 2141. 10.3390/en15062141 (2022).10.3390/en15062141 DOI
Sharma, S. et al. Modeling and sensitivity analysis of grid-connected hybrid green microgrid system. Ain Shams Eng. J.13, 101679. 10.1016/j.asej.2021.101679 (2022).10.1016/j.asej.2021.101679 DOI
Sufyan, M. A., Zuhaib, M. & Rihan, M. An investigation on the application and challenges for wide area monitoring and control in smart grid. Bull. Electr. Eng. Inform.10, 580–587 (2021).10.11591/eei.v10i2.2767 DOI
Khan, H. A., Zuhaib, M. & Rihan, M. Analysis of varying PV penetration level on harmonic content of active distribution system with a utility scale grid integrated solar farm. Aust. J. Electr. Electron. Eng.19, 283–293. 10.1080/1448837X.2022.2025656 (2022).10.1080/1448837X.2022.2025656 DOI
Abdalla, A. N. et al. Optimized economic operation of microgrid: combined cooling and heating power and hybrid energy storage systems. J. Energy Resour. Technol.143(7), 070906. 10.1115/1.4050971 (2021).10.1115/1.4050971 DOI
Dashtdar, M., Bajaj, M. & Hosseinimoghadam, S. M. S. Design of optimal energy management system in a residential microgrid based on smart control. Smart Sci.10, 25–39. 10.1080/23080477.2021.1949882 (2022).10.1080/23080477.2021.1949882 DOI
Dashtdar, M., Nazir, M. S., Hosseinimoghadam, S. M. S., Bajaj, M. & Goud, B. S. Improving the sharing of active and reactive power of the islanded microgrid based on load voltage control. Smart Sci.10, 142–157. 10.1080/23080477.2021.2012010 (2022).10.1080/23080477.2021.2012010 DOI
Punna, S. & Manthati, U. B. Optimum design and analysis of a dynamic energy management scheme for HESS in renewable power generation applications. SN Appl. Sci.2, 495. 10.1007/s42452-020-2313-3 (2020).10.1007/s42452-020-2313-3 DOI
I.S. 1547-2003, IEEE standard for interconnecting distributed resources with electric power systems, IEEENew York, NY, USA (2003) 1–28.
I.S. 1547-2018, IEEE Standard for interconnection and interoperability of distributed energy resources with associated electric power systems interfaces, IEEE New York, NY, USA (2018) 1–138. 10.1109/IEEESTD.2018.8332112.
H.H. Coban, M. Bajaj, V. Blazek, F. Jurado, S. Kamel, Forecasting energy consumption of electric vehicles, in: 2023 5th Glob. Power, Energy Commun. Conf., IEEE, 2023: pp. 120–124. 10.1109/GPECOM58364.2023.10175761
Panda, S. et al. Priority-based scheduling in residential energy management systems integrated with renewable sources using adaptive salp swarm algorithm. Results Eng.23, 102643. 10.1016/j.rineng.2024.102643 (2024).10.1016/j.rineng.2024.102643 DOI
Abdelkader, S. et al. Securing modern power systems: Implementing comprehensive strategies to enhance resilience and reliability against cyber-attacks. Results Eng.23, 102647. 10.1016/j.rineng.2024.102647 (2024).10.1016/j.rineng.2024.102647 DOI
Khan, H. A., Zuhaib, M. & Rihan, M. A review on voltage and frequency contingencies mitigation technologies in a grid with renewable energy integration. J. Inst. Eng. Ser. B103, 2195–2205. 10.1007/s40031-022-00819-2 (2022).10.1007/s40031-022-00819-2 DOI
Mobin, N., Rihan, M. & Zuhaib, M. Selection of an efficient linear state estimator for unified real time dynamic state estimation in Indian smart grid. Int. J. Emerg. Electr. Power Syst.20(4), 20190042. 10.1515/ijeeps-2019-0042 (2019).10.1515/ijeeps-2019-0042 DOI
Panda, S. et al. Residential demand side management model, optimization and future perspective: A review. Energy Rep.8, 3727–3766. 10.1016/j.egyr.2022.02.300 (2022).10.1016/j.egyr.2022.02.300 DOI
Bajaj, M. & Singh, A. K. Grid integrated renewable DG systems: A review of power quality challenges and state-of-the-art mitigation techniques. Int. J. Energy Res.44, 26–69. 10.1002/er.4847 (2020).10.1002/er.4847 DOI
I. Theubou Tameghe, Tommy Andy & Wamkeue, René & Kamwa, Modelling and simulation of a flywheel energy storage system for microgrids power plant applications, in: EIC Clim. Chang. Technol. Conf. 2015, 2015: pp 1–12.
Tightiz, L., Yang, H. & Bevrani, H. An interoperable communication framework for grid frequency regulation support from microgrids. Sensors21, 4555. 10.3390/s21134555 (2021). 10.3390/s21134555 PubMed DOI PMC
Arbab-Zavar, B., Palacios-Garcia, E., Vasquez, J. & Guerrero, J. Smart inverters for microgrid applications: A review. Energies12, 840. 10.3390/en12050840 (2019).10.3390/en12050840 DOI
Li, Q., Gao, M., Lin, H., Chen, Z. & Chen, M. MAS-based distributed control method for multi-microgrids with high-penetration renewable energy. Energy171, 284–295. 10.1016/j.energy.2018.12.167 (2019).10.1016/j.energy.2018.12.167 DOI
Hirsch, A., Parag, Y. & Guerrero, J. Microgrids: A review of technologies, key drivers, and outstanding issues. Renew. Sustain. Energy Rev.90, 402–411. 10.1016/j.rser.2018.03.040 (2018).10.1016/j.rser.2018.03.040 DOI
Ruiz Duarte, J. L. & Fan, N. Operation of a power grid with embedded networked microgrids and onsite renewable technologies. Energies15, 2350. 10.3390/en15072350 (2022).10.3390/en15072350 DOI
Zia, M. F., Elbouchikhi, E. & Benbouzid, M. Microgrids energy management systems: A critical review on methods, solutions, and prospects. Appl. Energy222, 1033–1055. 10.1016/j.apenergy.2018.04.103 (2018).10.1016/j.apenergy.2018.04.103 DOI
Roslan, M. F., Hannan, M. A., Ker, P. J. & Uddin, M. N. Microgrid control methods toward achieving sustainable energy management. Appl. Energy240, 583–607. 10.1016/j.apenergy.2019.02.070 (2019).10.1016/j.apenergy.2019.02.070 DOI
Ali, S. et al. A review of DC microgrid energy management systems dedicated to residential applications. Energies14, 4308. 10.3390/en14144308 (2021).10.3390/en14144308 DOI
Fontenot, H. & Dong, B. Modeling and control of building-integrated microgrids for optimal energy management – A review. Appl. Energy254, 113689. 10.1016/j.apenergy.2019.113689 (2019).10.1016/j.apenergy.2019.113689 DOI
Al-Ismail, F. S. DC microgrid planning, operation, and control: A comprehensive review. IEEE Access9, 36154–36172. 10.1109/ACCESS.2021.3062840 (2021).10.1109/ACCESS.2021.3062840 DOI
Meng, L. et al. Microgrid supervisory controllers and energy management systems: A literature review. Renew. Sustain. Energy Rev.60, 1263–1273. 10.1016/j.rser.2016.03.003 (2016).10.1016/j.rser.2016.03.003 DOI
Parhizi, S., Lotfi, H., Khodaei, A. & Bahramirad, S. State of the art in research on microgrids: A review. IEEE Access3, 890–925. 10.1109/ACCESS.2015.2443119 (2015).10.1109/ACCESS.2015.2443119 DOI
García Vera, Y. E., Dufo-López, R. & Bernal-Agustín, J. L. Energy management in microgrids with renewable energy sources: A literature review. Appl. Sci.9, 3854. 10.3390/app9183854 (2019).10.3390/app9183854 DOI
Elmouatamid, A. et al. Review of control and energy management approaches in micro-grid systems. Energies14, 168. 10.3390/en14010168 (2020).10.3390/en14010168 DOI
Khavari, F., Badri, A. & Zangeneh, A. Energy management in multi-microgrids considering point of common coupling constraint. Int. J. Electr. Power Energy Syst.115, 105465. 10.1016/j.ijepes.2019.105465 (2020).10.1016/j.ijepes.2019.105465 DOI
M.E. Gamez Urias, E.N. Sanchez, L.J. Ricalde, Electrical Microgrid Optimization via a New Recurrent Neural Network, IEEE Syst. J. 9 (2015) 945–953. 10.1109/JSYST.2014.2305494.
Minchala-Avila, L. I., Garza-Castanon, L., Zhang, Y. & Ferrer, H. J. A. Optimal energy management for stable operation of an islanded microgrid. IEEE Trans. Ind. Inform.12, 1361–1370. 10.1109/TII.2016.2569525 (2016).10.1109/TII.2016.2569525 DOI
Arcos-Aviles, D. et al. Low complexity energy management strategy for grid profile smoothing of a residential grid-connected microgrid using generation and demand forecasting. Appl. Energy205, 69–84. 10.1016/j.apenergy.2017.07.123 (2017).10.1016/j.apenergy.2017.07.123 DOI
Olivares, D. E., Canizares, C. A. & Kazerani, M. A centralized energy management system for isolated microgrids. IEEE Trans. Smart Grid5, 1864–1875. 10.1109/TSG.2013.2294187 (2014).10.1109/TSG.2013.2294187 DOI
Joshi, A., Capezza, S., Alhaji, A. & Chow, M.-Y. Survey on AI and machine learning techniques for microgrid energy management systems. IEEE/CAA J. Autom. Sin.10, 1513–1529. 10.1109/JAS.2023.123657 (2023).10.1109/JAS.2023.123657 DOI
Zhou, Q. et al. Two-stage robust optimization for prosumers considering uncertainties from sustainable energy of wind power generation and load demand based on nested C&CG algorithm. Sustainability15, 9769. 10.3390/su15129769 (2023).10.3390/su15129769 DOI
Suresh, V., Janik, P., Guerrero, J. M., Leonowicz, Z. & Sikorski, T. Microgrid energy management system with embedded deep learning forecaster and combined optimizer. IEEE Access8, 202225–202239. 10.1109/ACCESS.2020.3036131 (2020).10.1109/ACCESS.2020.3036131 DOI
Ji, Y., Wang, J., Xu, J. & Li, D. Data-driven online energy scheduling of a microgrid based on deep reinforcement learning. Energies14, 2120. 10.3390/en14082120 (2021).10.3390/en14082120 DOI
Fotopoulou, M., Rakopoulos, D. & Blanas, O. Day ahead optimal dispatch schedule in a smart grid containing distributed energy resources and electric vehicles. Sensors21, 7295. 10.3390/s21217295 (2021). 10.3390/s21217295 PubMed DOI PMC
Thompson, M. J., Sun, H. & Jiang, J. Blockchain-based peer-to-peer energy trading method. CSEE J. Power Energy Syst.8(5), 1318–1326 (2021).
Samadi, E., Badri, A. & Ebrahimpour, R. Decentralized multi-agent based energy management of microgrid using reinforcement learning. Int. J. Electr. Power Energy Syst.122, 106211. 10.1016/j.ijepes.2020.106211 (2020).10.1016/j.ijepes.2020.106211 DOI
Patel, S., Murari, K. & Kamalasadan, S. Distributed control of distributed energy resources in active power distribution system for local power balance with optimal spectral clustering. IEEE Trans. Ind. Appl.58, 5395–5408. 10.1109/TIA.2022.3172391 (2022).10.1109/TIA.2022.3172391 DOI
Eseye, A. T., Lehtonen, M., Tukia, T., Uimonen, S. & John Millar, R. Machine learning based integrated feature selection approach for improved electricity demand forecasting in decentralized energy systems. IEEE Access7, 91463–91475. 10.1109/ACCESS.2019.2924685 (2019).10.1109/ACCESS.2019.2924685 DOI
Zhang, L., Cheng, L., Alsokhiry, F. & Mohamed, M. A. A novel stochastic blockchain-based energy management in smart cities using V2S and V2G. IEEE Trans. Intell. Transp. Syst.24, 915–922. 10.1109/TITS.2022.3143146 (2023).10.1109/TITS.2022.3143146 DOI
Mohamed, M. A. et al. Towards energy management negotiation between distributed AC/DC networks. IEEE Access8, 215438–215456. 10.1109/ACCESS.2020.3040503 (2020).10.1109/ACCESS.2020.3040503 DOI
Tan, H., Li, Z., Wang, Q. & Mohamed, M. A. A novel forecast scenario-based robust energy management method for integrated rural energy systems with greenhouses. Appl. Energy330, 120343. 10.1016/j.apenergy.2022.120343 (2023).10.1016/j.apenergy.2022.120343 DOI
Gu, S. et al. Day-Ahead market model based coordinated multiple energy management in energy hubs. Sol. Energy262, 111877. 10.1016/j.solener.2023.111877 (2023).10.1016/j.solener.2023.111877 DOI
Mohanty, S. et al. Demand side management of electric vehicles in smart grids: A survey on strategies, challenges, modeling, and optimization. Energy Rep.8, 12466–12490. 10.1016/j.egyr.2022.09.023 (2022).10.1016/j.egyr.2022.09.023 DOI
Meena, C. et al. Innovation in green building sector for sustainable future. Energies15, 6631. 10.3390/en15186631 (2022).10.3390/en15186631 DOI
Kumar, R. S., Raghav, L. P., Raju, D. K. & Singh, A. R. Intelligent demand side management for optimal energy scheduling of grid connected microgrids. Appl. Energy285, 116435. 10.1016/j.apenergy.2021.116435 (2021).10.1016/j.apenergy.2021.116435 DOI
M. Awad, R. Khanna, Support vector regression, in: Effic. Learn. Mach., Apress, Berkeley, CA, 2015: pp 67–80. 10.1007/978-1-4302-5990-9_4.