Improved chaotic Bat algorithm for optimal coordinated tuning of power system stabilizers for multimachine power system
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38956387
PubMed Central
PMC11219771
DOI
10.1038/s41598-024-65101-5
PII: 10.1038/s41598-024-65101-5
Knihovny.cz E-zdroje
- Klíčová slova
- Chaotic NBA (CNBA), Chaotic maps, Multimachine power system, Novel Bat algorithm (NBA), Power system stability, Power system stabilizer,
- Publikační typ
- časopisecké články MeSH
Power systems exhibit nonlinearity. causing dynamic instability and complex power oscillations. This research proposes an innovative strategy using the Novel Bat Algorithm (NBA) to achieve ideal Power System Stabilizers (PSSs) in a multimachine power system. The approach shifts electromechanical modes to specific areas in the s-plane. Enhancing the multi-machine power system and establishing stabilizer parameters for dynamic performance. The study examines the designed approach aptitude for standard lead-lag PSSs configurations. In order to elevate the global search problem and transfer some static operators for the optimum optimization process. the chaos mapping. also known as CNBA. is introduced into NBA. Four different forms of chaos maps are compared in experiments to resolve unconstrained mathematical issues in order to illustrate CNBA performance. In any other case. the challenge of designing PSS under a wide range of loading situations is transformed into an optimization challenge with the damping ratio of electromechanical modes with low damping as the target function. The optimal stabilizers' gains are gotten by employing the CNBA algorithm. Second plan. an effective technique is astutely established to delineate the PSS location and quantity using CNBA and another side using participation factor. To examine the efficacy of the proposed CNBA-based PSS on a large system; it is tested on the interconnected of New-England/New-York (16 generators and 68 buses) power grid. and verified by comparative study with NBA through eigenvalue analysis and nonlinear simulation to provide evidence the algorithmic competence of CNBA. The CNBA approach yields a minimum damping ratio of 37%. which is consistent with the its eigenvalue. In contrast, the NBA approach achieves a minimum damping ratio of 31%. The simulation results reveal the fine performance of the proposed CNBA-PSS in a convincing manner and its capacity to provide an excellent damping for inter-area and local oscillations under diverse operating cases compared to NBA-PSS then in the case of PSS location.
Department of Electrical Engineering Graphic Era Dehradun 248002 India
Energy and Materials Laboratory University of Tamanghasset Tamanghasset Algeria
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Dai R, Liu G. Graph Database and Graph Computing for Power System Analysis. Wiley; 2023.
Eslami M, Shareef H, Mohamed A, Khajehzadeh M. A survey on flexible AC transmission systems (FACTS) Organ. 2012;1:12.
Nocoń A, Paszek S. A comprehensive review of power system stabilizers. Energies. 2023;16(4):1945. doi: 10.3390/en16041945. DOI
Mondal D, Chakrabarti A, Sengupta A. Power System Small Signal Stability Analysis and Control. Academic Press; 2020.
Erceg I, Sumina D, Tusun S, Kutija M. Power system stabilizer based on pointwise min-norm control law. Electr. Power Syst. Res. 2017;143:215–224. doi: 10.1016/j.epsr.2016.10.014. DOI
Paital SR, Ray PK, Mohanty SR, Mohanty A. An adaptive fractional fuzzy sliding mode controlled PSS for transient stability improvement under different system uncertainties. IET Smart Grid. 2021;4(1):61–75. doi: 10.1049/stg2.12002. DOI
Swain DR, Ray PK, Jena RK, Paital SR. Stability assessment using adaptive interval type-2 fuzzy sliding mode controlled power system stabilizer. Soft Comput. 2023;27(12):7715–7737. doi: 10.1007/s00500-023-08037-8. DOI
Gu C, Chi E, Guo C, Salah MM, Shaker A. A new self-tuning deep neuro-sliding mode control for multi-machine power system stabilizer. Mathematics. 2023;11(7):1616. doi: 10.3390/math11071616. DOI
Seo JC, Kim TH, Park JK, Moon SI. An LQG based PSS design for controlling the SSR in power systems with series-compensated lines. IEEE Trans. Energy Convers. 1996;11(2):423–428. doi: 10.1109/60.507655. DOI
Yathisha L, Patilkulkarni S. LQR and LQG based optimal switching techniques for PSS and UPFC in power systems. Control Theory Technol. 2018;16:25–37. doi: 10.1007/s11768-018-6174-x. DOI
Jokarzadeh M, Abedini M, Seifi A. Improving power system damping using a combination of optimal control theory and differential evolution algorithm. ISA Trans. 2019;90:169–177. doi: 10.1016/j.isatra.2018.12.039. PubMed DOI
Butti D, Mangipudi SK, Rayapudi SR. An improved whale optimization algorithm for the design of multi-machine power system stabilizer. Int. Trans. Electr. Energy Syst. 2020;30(5):e12314. doi: 10.1002/2050-7038.12314. DOI
Fan G, Yang F, Guo P, et al. A new model of connected renewable resource with power system and damping of low frequency oscillations by a new coordinated stabilizer based on modified multi-objective optimization algorithm. Sustain. Energy Technol. Assess. 2021;47:101356.
Tadj M, Chaib L, Choucha A, et al. Enhanced MPPT-based fractional-order PID for PV systems using aquila optimizer. Math. Comput. Appl. 2023;28(5):99.
Jebali M, Kahouli O, Hadj Abdallah H. Optimizing PSS parameters for a multi-machine power system using genetic algorithm and neural network techniques. Int. J. Adv. Manuf. Technol. 2017;90:2669–2688. doi: 10.1007/s00170-016-9547-7. DOI
Alkhatib H, Duveau J. Dynamic genetic algorithms for robust design of multimachine power system stabilizers. Int. J. Electr. Power Energy Syst. 2013;45(1):242–251. doi: 10.1016/j.ijepes.2012.08.080. DOI
Do Bomfim AL, Taranto GN, Falcao DM. Simultaneous tuning of power system damping controllers using genetic algorithms. IEEE Trans. Power Syst. 2000;15(1):163–169. doi: 10.1109/59.852116. DOI
Hasanovic, A. & Feliachi, A. Genetic algorithm based inter-area oscillation damping controller design using MATLAB. 1136–1141.
Linda MM, Nair NK. A new-fangled adaptive mutation breeder genetic optimization of global multi-machine power system stabilizer. Int. J. Electr. Power Energy Syst. 2013;44(1):249–258. doi: 10.1016/j.ijepes.2012.06.005. DOI
Sebaa K, Boudour M. Optimal locations and tuning of robust power system stabilizer using genetic algorithms. Electr. Power Syst. Res. 2009;79(2):406–416. doi: 10.1016/j.epsr.2008.08.005. DOI
Choucha, A., Chaib, L., Arif, S. & Mokrani, L. Simultaneous coordinated and tuning of PSS for a multimachine power system using a new hybridization (GA-GR) via a multi-objective function. J. Theor. Appl. Inf. Technol.70(3), 482–487 (2014).
Acharya D, Das DK. An optimizer to tune fractional-order power system stabilizer for synchronous generator considering governor effect and exciter voltage fluctuation. J. Control Autom. Electr. Syst. 2023;34(2):407–419. doi: 10.1007/s40313-022-00962-7. DOI
Eslami M, Neshat M, Khalid SA. A novel hybrid sine cosine algorithm and pattern search for optimal coordination of power system damping controllers. Sustainability. 2022;14(1):541. doi: 10.3390/su14010541. DOI
Izci D. A novel improved atom search optimization algorithm for designing power system stabilizer. Evol. Intell. 2022;15(3):2089–2103. doi: 10.1007/s12065-021-00615-9. DOI
Du W, Dong W, Wang Y, Wang H. A method to design power system stabilizers in a multi-machine power system based on single-machine infinite-bus system model. IEEE Trans. Power Syst. 2021;36(4):3475–3486. doi: 10.1109/TPWRS.2020.3041037. DOI
Ansari J, Abbasi AR, Heydari MH, Avazzadeh Z. Simultaneous design of fuzzy PSS and fuzzy STATCOM controllers for power system stability enhancement. Alex. Eng. J. 2022;61(4):2841–2850. doi: 10.1016/j.aej.2021.08.007. DOI
Latif S, Irshad S, Ahmadi Kamarposhti M, et al. Intelligent design of multi-machine power system stabilizers (PSSs) using improved particle swarm optimization. Electronics. 2022;11(6):946. doi: 10.3390/electronics11060946. DOI
Eslami, M., Shareef, H., Mohamed, A. & Khajehzadeh, M. Optimal location of PSS using improved PSO with chaotic sequence. In International Conference on Electrical. Control and Computer Engineering 2011 (InECCE), 253–258 (IEEE, 2011).
Eslami, M., Shareef, H., Mohamed, A. & Khajehzadeh, M. Coordinated design of PSS and SVC damping controller using CPSO. In 2011 5th International Power Engineering and Optimization Conference, 11–16 (IEEE, 2011).
Yokus H, Ozturk A. A robust crow search algorithm-based power system stabilizer for the SMIB system. Neural Comput. Appl. 2022;34(11):9161–9173. doi: 10.1007/s00521-022-06943-w. DOI
Mostafa HE, El-Sharkawy MA, Emary AA, Yassin K. Design and allocation of power system stabilizers using the particle swarm optimization technique for an interconnected power system. Int. J. Electr. Power Energy Syst. 2012;34(1):57–65. doi: 10.1016/j.ijepes.2011.09.005. DOI
El-Zonkoly A, Khalil A, Ahmied N. Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization. Expert Syst. Appl. 2009;36(2):2097–2106. doi: 10.1016/j.eswa.2007.12.069. DOI
Das TK, Venayagamoorthy GK, Aliyu UO. Bio-inspired algorithms for the design of multiple optimal power system stabilizers: SPPSO and BFA. IEEE Trans. Ind. Appl. 2008;44(5):1445–1457. doi: 10.1109/TIA.2008.2002171. DOI
Panda S. Robust coordinated design of multiple and multi-type damping controller using differential evolution algorithm. Int. J. Electr. Power Energy Syst. 2011;33(4):1018–1030. doi: 10.1016/j.ijepes.2011.01.019. DOI
Ramirez JM, Correa RE, Hernández DC. A strategy to simultaneously tune power system stabilizers. Int. J. Electr. Power Energy Syst. 2012;43(1):818–829. doi: 10.1016/j.ijepes.2012.06.025. DOI
Setiadi, H. et al. Coordinated design of DIPSS and CES using MDEA for stability enhancement: Jawa-Bali Indonesian power grid study case. Int. J. Intell. Eng. Syst.15(1), 251–261 (2022).
Yang, X.-S. A new metaheuristic bat-inspired algorithm. In Nature Inspired Cooperative Strategies for Optimization (NICSO 2010), 65–74 (Springer, 2010).
Sarkar DU, Prakash T. A Recent review on approaches to design power system stabilizers: Status, challenges and future scope. IEEE Access. 2023;11:34044–34061. doi: 10.1109/ACCESS.2023.3244687. DOI
Sambariya D, Prasad R. Robust tuning of power system stabilizer for small signal stability enhancement using metaheuristic bat algorithm. Int. J. Electr. Power Energy Syst. 2014;61:229–238. doi: 10.1016/j.ijepes.2014.03.050. DOI
Ali E. Optimization of power system stabilizers using BAT search algorithm. Int. J. Electr. Power Energy Syst. 2014;61:683–690. doi: 10.1016/j.ijepes.2014.04.007. DOI
Chaib L, Choucha A, Arif S. Optimal design and tuning of novel fractional order PID power system stabilizer using a new metaheuristic Bat algorithm. Ain Shams Eng. J. 2017;8(2):113–125. doi: 10.1016/j.asej.2015.08.003. DOI
Gurung S, Jurado F, Naetiladdanon S, Sangswang A. Comparative analysis of probabilistic and deterministic approach to tune the power system stabilizers using the directional bat algorithm to improve system small-signal stability. Electr. Power Syst. Res. 2020;181:106176. doi: 10.1016/j.epsr.2019.106176. DOI
Folly KA. Performance evaluation of power system stabilizers based on population-based incremental learning (PBIL) algorithm. Int. J. Electr. Power Energy Syst. 2011;33(7):1279–1287. doi: 10.1016/j.ijepes.2011.05.004. DOI
Shayeghi H, Ghasemi A. A multi objective vector evaluated improved honey bee mating optimization for optimal and robust design of power system stabilizers. Int. J. Electr. Power Energy Syst. 2014;62:630–645. doi: 10.1016/j.ijepes.2014.05.010. DOI
Peres W, De Oliveira EJ, Passos Filho JA, da Silva Junior IC. Coordinated tuning of power system stabilizers using bio-inspired algorithms. Int. J. Electr. Power Energy Syst. 2015;64:419–428. doi: 10.1016/j.ijepes.2014.07.040. DOI
Chitara D, Niazi KR, Swarnkar A, Gupta N. Cuckoo search optimization algorithm for designing of a multimachine power system stabilizer. IEEE Trans. Ind. Appl. 2018;54(4):3056–3065. doi: 10.1109/TIA.2018.2811725. DOI
Farah A, Guesmi T, Abdallah HH, Ouali A. A novel chaotic teaching–learning-based optimization algorithm for multi-machine power system stabilizers design problem. Int. J. Electr. Power Energy Syst. 2016;77:197–209. doi: 10.1016/j.ijepes.2015.11.050. DOI
Khodabakhshian A, Hemmati R, Moazzami M. Multi-band power system stabilizer design by using CPCE algorithm for multi-machine power system. Electr. Power Syst. Res. 2013;101:36–48. doi: 10.1016/j.epsr.2013.03.011. DOI
Khodabakhshian A, Hemmati R. Multi-machine power system stabilizer design by using cultural algorithms. Int. J. Electr. Power Energy Syst. 2013;44(1):571–580. doi: 10.1016/j.ijepes.2012.07.049. DOI
Chaib L, Choucha A, Arif S, et al. Robust design of power system stabilizers using improved harris hawk optimizer for interconnected power system. Sustainability. 2021;13(21):11776. doi: 10.3390/su132111776. DOI
Devarapalli R, Bhattacharyya B. A hybrid modified grey wolf optimization-sine cosine algorithm-based power system stabilizer parameter tuning in a multimachine power system. Optim. Control Appl. Methods. 2020;41(4):1143–1159. doi: 10.1002/oca.2591. DOI
Razmjooy, N. et al. A new design for robust control of power system stabilizer based on Moth search algorithm. Metaheuristics Optim. Comput. Electr. Eng.696, 187–202 (2021).
Bayu ES, Khan B, Ali ZM, et al. Mitigation of low-frequency oscillation in power systems through optimal design of power system stabilizer employing ALO. Energies. 2022;15(10):3809. doi: 10.3390/en15103809. DOI
Snášel V, Rizk-Allah RM, Izci D, Ekinci S. Weighted mean of vectors optimization algorithm and its application in designing the power system stabilizer. Appl. Soft Comput. 2023;136:110085. doi: 10.1016/j.asoc.2023.110085. DOI
Butti D, Mangipudi SK, Rayapudi S. Model order reduction based power system stabilizer design using improved whale optimization algorithm. IETE J. Res. 2023;69(4):2144–2163. doi: 10.1080/03772063.2021.1886875. DOI
El-Dabah MA, Hassan MH, Kamel S, Abido MA, Zawbaa HM. Optimal tuning of power system stabilizers for a multi-machine power systems using hybrid gorilla troops and gradient-based optimizers. IEEE Access. 2023;11:27168–27188. doi: 10.1109/ACCESS.2023.3250384. DOI
Eslami M, Akbari E, Seyed Sadr ST, Ibrahim BF. A novel hybrid algorithm based on rat swarm optimization and pattern search for parameter extraction of solar photovoltaic models. Energy Sci. Eng. 2022;10(8):2689–2713. doi: 10.1002/ese3.1160. DOI
Chaib L, Tadj M, Choucha A, Khemili FZ, Attia EF. Improved crayfish optimization algorithm for parameters estimation of photovoltaic models. Energy Convers. Manag. 2024;313:118627. doi: 10.1016/j.enconman.2024.118627. DOI
Khemili FZ, Bouhali O, Lefouili M, Chaib L, El-Fergany AA, Agwa AM. Design of cascaded multilevel inverter and enhanced MPPT method for large-scale photovoltaic system integration. Sustainability. 2023;15(12):9633. doi: 10.3390/su15129633. DOI
Eslami M, Shareef H, Mohamed A, Khajehzadeh M. PSS and TCSC damping controller coordinated design using GSA. Energy Procedia. 2012;14:763–769. doi: 10.1016/j.egypro.2011.12.1008. DOI
Kar MK, Kumar S, Singh AK, Panigrahi S. A modified sine cosine algorithm with ensemble search agent updating schemes for small signal stability analysis. Int. Trans. Electr. Energy Syst. 2021;31(11):e13058. doi: 10.1002/2050-7038.13058. DOI
Kar MK, Singh AK, Kumar S, Rout B. Application of fractional-order PID controller to improve stability of a single-machine infinite-bus system. J. Inst. Eng. (India) Ser. B. 2024;105(1):77–92. doi: 10.1007/s40031-023-00950-8. DOI
Ghosh S, Isbeih YJ, ElMoursi MS, El-Saadany EF. Cross-gramian model reduction approach for tuning power system stabilizers in large power networks. IEEE Trans. Power Syst. 2020;35(3):1911–1922. doi: 10.1109/TPWRS.2019.2924495. DOI
Sabo A, Wahab NIA, Othman ML, Jaffar MZAM, Beiranvand H. Optimal design of power system stabilizer for multimachine power system using farmland fertility algorithm. Int. Trans. Electr. Energy Syst. 2020;30:e12657. doi: 10.1002/2050-7038.12657. DOI
Sabo A, Wahab NIA, Othman ML, Jaffar MZAM, Acikgoz H, Nafisi H, Shahinzadeh H. Artificial intelligence-based power system stabilizers for frequency stability enhancement in multi-machine power systems. IEEE Access. 2021;9:166095–166116. doi: 10.1109/ACCESS.2021.3133285. DOI
Sreedivya KM, Jeyanthy PA, Devaraj D. Improved design of interval type-2 fuzzy based wide area power system stabilizer for inter-area oscillation damping. Microprocess. Microsyst. 2021;83:103957. doi: 10.1016/j.micpro.2021.103957. DOI
Sadhana SG, Kumaravel S, Ashok S. Revamped sine cosine algorithm centered optimization of system stabilizers and oscillation dampers for wind penetrated power system. IEEE Access. 2023;11:1890–1905. doi: 10.1109/ACCESS.2022.3232294. DOI
El-Dabah MA, Hassan MH, Kamel S, Abido MA, Zawbaa HM. Optimal tuning of power system stabilizers for a multi-machine power systems using hybrid gorilla troops and gradient-based optimizers. IEEE Access. 2023;11:27168–27188. doi: 10.1109/ACCESS.2023.3250384. DOI
Chitara D, Singhal PK, Surana SL, Sharma G, Bansal RC. Robust multi-machine power system stabilizer design using bio-inspired optimization techniques and their comparison. Int. J. Electr. Power Energy Syst. 2023;155:109615. doi: 10.1016/j.ijepes.2023.109615. DOI
Kundur PS, Balu NJ, Lauby MG. Power system dynamics and stability. Power Syst. Stab. Control. 2017;3:700–701.
Obaid ZA, Cipcigan L, Muhssin MT. Power system oscillations and control: Classifications and PSSs’ design methods: A review. Renew. Sustain. Energy Rev. 2017;79:839–849. doi: 10.1016/j.rser.2017.05.103. DOI
Kundur PS, Malik OP. Power System Stability and Control. McGraw-Hill Education; 2022.
Greenhall AM. Natural History of Vampire Bats. CRC Press; 2018.
Gandomi AH, Yang X-S. Chaotic bat algorithm. J. Comput. Sci. 2014;5(2):224–232. doi: 10.1016/j.jocs.2013.10.002. DOI
Wang Y, Wang P, Zhang J, et al. A novel bat algorithm with multiple strategies coupling for numerical optimization. Mathematics. 2019;7(2):135. doi: 10.3390/math7020135. DOI
He D, He C, Jiang L-G, et al. Chaotic characteristics of a one-dimensional iterative map with infinite collapses. IEEE Trans. Circuits Syst. I Fundam. Theory Appl. 2001;48(7):900–906. doi: 10.1109/81.933333. DOI
Tomida, A. G. Matlab toolbox and GUI for analyzing one-dimensional chaotic maps. 321–330.
Li Y, Deng S, Xiao D. A novel Hash algorithm construction based on chaotic neural network. Neural Comput. Appl. 2011;20:133–141. doi: 10.1007/s00521-010-0432-2. DOI
May RM. Simple mathematical models with very complicated dynamics. Nature. 1976;261(5560):459–467. doi: 10.1038/261459a0. PubMed DOI