Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management

. 2024 Feb 07 ; 14 (1) : 3091. [epub] 20240207

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38326491
Odkazy

PubMed 38326491
PubMed Central PMC10850138
DOI 10.1038/s41598-024-53688-8
PII: 10.1038/s41598-024-53688-8
Knihovny.cz E-zdroje

This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass demand-side management (DSM), integration of non-conventional energy sources, and the utilization of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-wind-thermal energy system. The DSM program not only enhances power grid security but also lowers operational costs. The research addresses the DED problem with and without DSM implementation to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method's efficacy is showcased. The recommended method's simulation results have been compared to those obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is conducted with Demand-Side Management (DSM). This underscores the advantageous capability of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA has greater adaptability and reliability, making it a promising solution for addressing multi-objective energy management difficulties within microgrids, particularly when demand response mechanisms are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles and renewable energy sources are integrated.

Zobrazit více v PubMed

Hu F, Mou S, Wei S, Liping Q, Hu H, Zhou H. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strateg. Rev. 2024;51:101309. doi: 10.1016/j.esr.2024.101309. DOI

Shao B, Xiao Q, Xiong L, Wang L, Yang Y, Chen Z, et al. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst. 2023;145:108645. doi: 10.1016/j.ijepes.2022.108645. DOI

Lin X, Wen Y, Yu R, Yu J, Wen H. Improved weak grids synchronization unit for passivity enhancement of grid-connected inverter. IEEE J. Emerg. Sel. Top Power Electron. 2022;10:7084–7097. doi: 10.1109/JESTPE.2022.3168655. DOI

Lin X, Liu Y, Yu J, Yu R, Zhang J, Wen H. Stability analysis of Three-phase Grid-Connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 2022;142:108244. doi: 10.1016/j.ijepes.2022.108244. DOI

Gao Y, Doppelbauer M, Ou J, Qu R. Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J. Emerg. Sel. Top Power Electron. 2022;10:1671–1682. doi: 10.1109/JESTPE.2021.3105557. DOI

Hu F, Wei S, Qiu L, Hu H, Zhou H. Innovative association network of new energy vehicle charging stations in China: Structural evolution and policy implications. Heliyon. 2024;10:e24764. doi: 10.1016/j.heliyon.2024.e24764. PubMed DOI PMC

Li S, Zhao X, Liang W, Hossain MT, Zhang Z. A fast and accurate calculation method of line breaking power flow based on Taylor expansion. Front Energy Res. 2022 doi: 10.3389/fenrg.2022.943946. DOI

Liu Y, Liu X, Li X, Yuan H, Xue Y. Model predictive control-based dual-mode operation of an energy-stored quasi-Z-source photovoltaic power system. IEEE Trans. Ind. Electron. 2023;70:9169–9180. doi: 10.1109/TIE.2022.3215451. DOI

Wu H, Jin S, Yue W. Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J. Syst. Sci. Syst. Eng. 2022;31:133–149. doi: 10.1007/s11518-022-5521-0. DOI

Liu G. Data collection in MI-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Commun. Mag. 2021;59:132–138. doi: 10.1109/MCOM.001.2000921. DOI

Xiao Y, Konak A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. Part E Logist. Transp. Rev. 2016;88:146–166. doi: 10.1016/j.tre.2016.01.011. DOI

Yang Y, Zhang Z, Zhou Y, Wang C, Zhu H. Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microw. Theory Tech. 2023;71:907–915. doi: 10.1109/TMTT.2022.3205612. DOI

Jiang Z, Xu C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy. 2023;177:113527. doi: 10.1016/j.enpol.2023.113527. DOI

Shirkhani M, Tavoosi J, Danyali S, Sarvenoee AK, Abdali A, Mohammadzadeh A, et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep. 2023;10:368–380. doi: 10.1016/j.egyr.2023.06.022. DOI

Wang Y, Xia F, Wang Y, Xiao X. Harmonic transfer function based single-input single-output impedance modeling of LCCHVDC systems. J. Mod. Power Syst. Clean Energy. 2023 doi: 10.3583/MPCE.2023.000093. DOI

Wang Y, Chen P, Yong J, Xu W, Xu S, Liu K. A comprehensive investigation on the selection of high-pass harmonic filters. IEEE Trans. Power Deliv. 2022;37:4212–4226. doi: 10.1109/TPWRD.2022.3147835. DOI

Rajagopalan A, Nagarajan K, Montoya OD, Dhanasekaran S, Kareem IA, Perumal AS, et al. Multi-objective optimal scheduling of a microgrid using oppositional gradient-based grey Wolf optimizer. Energies. 2022;15:9024. doi: 10.3390/en15239024. DOI

Wu H, Liu X, Ding M. Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm. Int. J. Electr. Power Energy Syst. 2014;63:336–346. doi: 10.1016/j.ijepes.2014.06.002. DOI

Chinnadurrai CL, Victoire TAA. Enhanced multi-objective crisscross optimization for dynamic economic emission dispatch considering demand response and wind power uncertainty. Soft Comput. 2020;24:9021–9038. doi: 10.1007/s00500-019-04431-3. DOI

Suresh V, Sreejith S, Sudabattula SK, Kamboj VK. Demand response-integrated economic dispatch incorporating renewable energy sources using ameliorated dragonfly algorithm. Electr. Eng. 2019;101:421–442. doi: 10.1007/s00202-019-00792-y. DOI

Karthik, N., Parvathy, A. K., Arul, R. & Padmanathan, K. A new heuristic algorithm for economic load dispatch incorporating wind power, p. 47–65. 10.1007/978-981-16-2674-6_5 (2022).

Qin H, Wu Z, Wang M. Demand-side management for smart grid networks using stochastic linear programming game. Neural Comput. Appl. 2020;32:139–149. doi: 10.1007/s00521-018-3787-4. DOI

He X, Yu J, Huang T, Li C. Distributed power management for dynamic economic dispatch in the multimicrogrids environment. IEEE Trans. Control Syst. Technol. 2019;27:1651–1658. doi: 10.1109/TCST.2018.2816902. DOI

Rajagopalan, A. & Montoya, O. D. Environmental economic load dispatch considering demand response using a new heuristic optimization algorithm, p. 220–42. 10.4018/978-1-6684-8816-4.ch013 (2023).

Lokeshgupta B, Sivasubramani S. Multi-objective dynamic economic and emission dispatch with demand side management. Int. J. Electr. Power Energy Syst. 2018;97:334–343. doi: 10.1016/j.ijepes.2017.11.020. DOI

Karthik N, Parvathy AK, Arul R, Jayapragash R, Narayanan S. Economic load dispatch in a microgrid using Interior Search Algorithm. Innov. Power Adv. Comput. Technol IEEE. 2019;2019:1–6. doi: 10.1109/i-PACT44901.2019.8960249. DOI

Bhamidi L, Shanmugavelu S. Multi-objective harmony search algorithm for dynamic optimal power flow with demand side management. Electr. Power Comp. Syst. 2019;47:692–702. doi: 10.1080/15325008.2019.1627599. DOI

Narimani M, Joo J-Y, Crow M. Multi-objective dynamic economic dispatch with demand side management of residential loads and electric vehicles. Energies. 2017;10:624. doi: 10.3390/en10050624. DOI

Nagarajan K, Rajagopalan A, Angalaeswari S, Natrayan L, Mammo WD. Combined economic emission dispatch of microgrid with the incorporation of renewable energy sources using improved mayfly optimization algorithm. Comput. Intell. Neurosci. 2022;2022:1–22. doi: 10.1155/2022/6461690. PubMed DOI PMC

Basu M. Dynamic economic dispatch with demand-side management incorporating renewable energy sources and pumped hydroelectric energy storage. Electr. Eng. 2019;101:877–893. doi: 10.1007/s00202-019-00793-x. DOI

Basu M. Fuel constrained dynamic economic dispatch with demand side management. Energy. 2021;223:120068. doi: 10.1016/j.energy.2021.120068. DOI

Nwulu NI, Xia X. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs. Energy Convers. Manag. 2015;89:963–974. doi: 10.1016/j.enconman.2014.11.001. DOI

Mohammadjafari M, Ebrahimi R. Multi-objective dynamic economic emission dispatch of microgrid using novel efficient demand response and zero energy balance approach. Int. J. Renew. Energy Res. 2020 doi: 10.20508/ijrer.v10i1.10322.g7846. DOI

Li P, Hu J, Qiu L, Zhao Y, Ghosh BK. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 2022;9:356–366. doi: 10.1109/TCNS.2021.3104103. DOI

Duan Y, Zhao Y, Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023;34:101004. doi: 10.1016/j.segan.2023.101004. DOI

Mou J, Gao K, Duan P, Li J, Garg A, Sharma R. A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst. 2023;24:15527–15539. doi: 10.1109/TITS.2022.3183215. DOI

Zhang L, Yin Q, Zhu W, Lyu L, Jiang L, Koh LH, et al. Research on the orderly charging and discharging mechanism of electric vehicles considering travel characteristics and carbon quota. IEEE Trans. Transp. Electrif. 2023 doi: 10.1109/TTE.2023.3296964. DOI

Karthik N, Parvathy AK, Arul R. Multi-objective economic emission dispatch using interior search algorithm. Int. Trans. Electr. Energy Syst. 2019;29:e2683. doi: 10.1002/etep.2683. DOI

Rajagopalan A, Kasinathan P, Nagarajan K, Ramachandaramurthy VK, Sengoden V, Alavandar S. Chaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraints. Int. Trans. Electr. Energy Syst. 2019 doi: 10.1002/2050-7038.12026. DOI

Karthik N, Parvathy AK, Arul R, Padmanathan K. Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources. Int. J. Energy Environ. Eng. 2021;12:641–678. doi: 10.1007/s40095-021-00397-x. DOI

Zhang L, Sun C, Cai G, Koh LH. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. ETransportation. 2023;18:100262. doi: 10.1016/j.etran.2023.100262. DOI

Mo J, Yang H. Sampled value attack detection for busbar differential protection based on a negative selection immune system. J. Mod. Power Syst. Clean. Energy. 2023;11:421–433. doi: 10.35833/MPCE.2021.000318. DOI

Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P. Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans. Fuzzy Syst. 2020;28:2702–2710. doi: 10.1109/TFUZZ.2020.3026140. DOI

Wu Q, Fang J, Zeng J, Wen J, Luo F. Monte Carlo simulation-based robust workflow scheduling for spot instances in cloud environments. Tsinghua Sci. Technol. 2024;29:112–126. doi: 10.26599/TST.2022.9010065. DOI

Wang Z, Li J, Hu C, Li X, Zhu Y. Hybrid energy storage system and management strategy for motor drive with high torque overload. J. Energy Storage. 2024;75:109432. doi: 10.1016/j.est.2023.109432. DOI

Biswas PP, Suganthan PN, Amaratunga GAJ. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017;148:1194–1207. doi: 10.1016/j.enconman.2017.06.071. DOI

Jabir H, Teh J, Ishak D, Abunima H. Impacts of demand-side management on electrical power systems: A review. Energies. 2018;11:1050. doi: 10.3390/en11051050. DOI

Meyabadi AF, Deihimi MH. A review of demand-side management: Reconsidering theoretical framework. Renew. Sustain. Energy Rev. 2017;80:367–379. doi: 10.1016/j.rser.2017.05.207. DOI

Akbari MA, Zare M, Azizipanah-abarghooee R, Mirjalili S, Deriche M. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep. 2022;12:10953. doi: 10.1038/s41598-022-14338-z. PubMed DOI PMC

Memon ZA, Akbari MA, Zare M. An improved cheetah optimizer for accurate and reliable estimation of unknown parameters in photovoltaic cell and module models. Appl. Sci. 2023;13:9997. doi: 10.3390/app13189997. DOI

Song H-M, Xing C, Wang J-S, Wang Y-C, Liu Y, Zhu J-H, et al. Improved pelican optimization algorithm with chaotic interference factor and elementary mathematical function. Soft Comput. 2023;27:10607–10646. doi: 10.1007/s00500-023-08205-w. DOI

Karthik, N., Parvathy, A. K., Arul, R. & Padmanathan, K. Levy interior search algorithm-based multi-objective optimal reactive power dispatch for voltage stability enhancement, p. 221–44. 10.1007/978-981-15-7241-8_17. (2021).

Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI

Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018;30:413–435. doi: 10.1007/s00521-017-3272-5. DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Improved Lyrebird optimization for multi microgrid sectionalizing and cost efficient scheduling of distributed generation

. 2025 May 19 ; 15 (1) : 17345. [epub] 20250519

Comprehensive framework for smart residential demand side management with electric vehicle integration and advanced optimization techniques

. 2025 Mar 22 ; 15 (1) : 9948. [epub] 20250322

A hybrid demand-side policy for balanced economic emission in microgrid systems

. 2025 Mar 21 ; 28 (3) : 112121. [epub] 20250227

Machine learning-based energy management and power forecasting in grid-connected microgrids with multiple distributed energy sources

. 2024 Aug 19 ; 14 (1) : 19207. [epub] 20240819

Fault detection and diagnosis of grid-connected photovoltaic systems using energy valley optimizer based lightweight CNN and wavelet transform

. 2024 Aug 14 ; 14 (1) : 18907. [epub] 20240814

Multi-objective energy management in a renewable and EV-integrated microgrid using an iterative map-based self-adaptive crystal structure algorithm

. 2024 Jul 08 ; 14 (1) : 15652. [epub] 20240708

Sustainable power management in light electric vehicles with hybrid energy storage and machine learning control

. 2024 Mar 07 ; 14 (1) : 5661. [epub] 20240307

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...