Optimizing dynamic economic dispatch through an enhanced Cheetah-inspired algorithm for integrated renewable energy and demand-side management
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
38326491
PubMed Central
PMC10850138
DOI
10.1038/s41598-024-53688-8
PII: 10.1038/s41598-024-53688-8
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass demand-side management (DSM), integration of non-conventional energy sources, and the utilization of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-wind-thermal energy system. The DSM program not only enhances power grid security but also lowers operational costs. The research addresses the DED problem with and without DSM implementation to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method's efficacy is showcased. The recommended method's simulation results have been compared to those obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is conducted with Demand-Side Management (DSM). This underscores the advantageous capability of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA has greater adaptability and reliability, making it a promising solution for addressing multi-objective energy management difficulties within microgrids, particularly when demand response mechanisms are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles and renewable energy sources are integrated.
Applied Science Research Center Applied Science Private University Amman 11937 Jordan
Electrical Engineering Department Graphic Era Dehradun 248002 India
ENET Centre VSB Technical University of Ostrava 708 00 Ostrava Czech Republic
Graphic Era Hill University Dehradun 248002 India
Hourani Center for Applied Scientific Research Al Ahliyya Amman University Amman Jordan
Zobrazit více v PubMed
Hu F, Mou S, Wei S, Liping Q, Hu H, Zhou H. Research on the evolution of China’s photovoltaic technology innovation network from the perspective of patents. Energy Strateg. Rev. 2024;51:101309. doi: 10.1016/j.esr.2024.101309. DOI
Shao B, Xiao Q, Xiong L, Wang L, Yang Y, Chen Z, et al. Power coupling analysis and improved decoupling control for the VSC connected to a weak AC grid. Int. J. Electr. Power Energy Syst. 2023;145:108645. doi: 10.1016/j.ijepes.2022.108645. DOI
Lin X, Wen Y, Yu R, Yu J, Wen H. Improved weak grids synchronization unit for passivity enhancement of grid-connected inverter. IEEE J. Emerg. Sel. Top Power Electron. 2022;10:7084–7097. doi: 10.1109/JESTPE.2022.3168655. DOI
Lin X, Liu Y, Yu J, Yu R, Zhang J, Wen H. Stability analysis of Three-phase Grid-Connected inverter under the weak grids with asymmetrical grid impedance by LTP theory in time domain. Int. J. Electr. Power Energy Syst. 2022;142:108244. doi: 10.1016/j.ijepes.2022.108244. DOI
Gao Y, Doppelbauer M, Ou J, Qu R. Design of a double-side flux modulation permanent magnet machine for servo application. IEEE J. Emerg. Sel. Top Power Electron. 2022;10:1671–1682. doi: 10.1109/JESTPE.2021.3105557. DOI
Hu F, Wei S, Qiu L, Hu H, Zhou H. Innovative association network of new energy vehicle charging stations in China: Structural evolution and policy implications. Heliyon. 2024;10:e24764. doi: 10.1016/j.heliyon.2024.e24764. PubMed DOI PMC
Li S, Zhao X, Liang W, Hossain MT, Zhang Z. A fast and accurate calculation method of line breaking power flow based on Taylor expansion. Front Energy Res. 2022 doi: 10.3389/fenrg.2022.943946. DOI
Liu Y, Liu X, Li X, Yuan H, Xue Y. Model predictive control-based dual-mode operation of an energy-stored quasi-Z-source photovoltaic power system. IEEE Trans. Ind. Electron. 2023;70:9169–9180. doi: 10.1109/TIE.2022.3215451. DOI
Wu H, Jin S, Yue W. Pricing policy for a dynamic spectrum allocation scheme with batch requests and impatient packets in cognitive radio networks. J. Syst. Sci. Syst. Eng. 2022;31:133–149. doi: 10.1007/s11518-022-5521-0. DOI
Liu G. Data collection in MI-assisted wireless powered underground sensor networks: Directions, recent advances, and challenges. IEEE Commun. Mag. 2021;59:132–138. doi: 10.1109/MCOM.001.2000921. DOI
Xiao Y, Konak A. The heterogeneous green vehicle routing and scheduling problem with time-varying traffic congestion. Transp. Res. Part E Logist. Transp. Rev. 2016;88:146–166. doi: 10.1016/j.tre.2016.01.011. DOI
Yang Y, Zhang Z, Zhou Y, Wang C, Zhu H. Design of a simultaneous information and power transfer system based on a modulating feature of magnetron. IEEE Trans. Microw. Theory Tech. 2023;71:907–915. doi: 10.1109/TMTT.2022.3205612. DOI
Jiang Z, Xu C. Policy incentives, government subsidies, and technological innovation in new energy vehicle enterprises: Evidence from China. Energy Policy. 2023;177:113527. doi: 10.1016/j.enpol.2023.113527. DOI
Shirkhani M, Tavoosi J, Danyali S, Sarvenoee AK, Abdali A, Mohammadzadeh A, et al. A review on microgrid decentralized energy/voltage control structures and methods. Energy Rep. 2023;10:368–380. doi: 10.1016/j.egyr.2023.06.022. DOI
Wang Y, Xia F, Wang Y, Xiao X. Harmonic transfer function based single-input single-output impedance modeling of LCCHVDC systems. J. Mod. Power Syst. Clean Energy. 2023 doi: 10.3583/MPCE.2023.000093. DOI
Wang Y, Chen P, Yong J, Xu W, Xu S, Liu K. A comprehensive investigation on the selection of high-pass harmonic filters. IEEE Trans. Power Deliv. 2022;37:4212–4226. doi: 10.1109/TPWRD.2022.3147835. DOI
Rajagopalan A, Nagarajan K, Montoya OD, Dhanasekaran S, Kareem IA, Perumal AS, et al. Multi-objective optimal scheduling of a microgrid using oppositional gradient-based grey Wolf optimizer. Energies. 2022;15:9024. doi: 10.3390/en15239024. DOI
Wu H, Liu X, Ding M. Dynamic economic dispatch of a microgrid: Mathematical models and solution algorithm. Int. J. Electr. Power Energy Syst. 2014;63:336–346. doi: 10.1016/j.ijepes.2014.06.002. DOI
Chinnadurrai CL, Victoire TAA. Enhanced multi-objective crisscross optimization for dynamic economic emission dispatch considering demand response and wind power uncertainty. Soft Comput. 2020;24:9021–9038. doi: 10.1007/s00500-019-04431-3. DOI
Suresh V, Sreejith S, Sudabattula SK, Kamboj VK. Demand response-integrated economic dispatch incorporating renewable energy sources using ameliorated dragonfly algorithm. Electr. Eng. 2019;101:421–442. doi: 10.1007/s00202-019-00792-y. DOI
Karthik, N., Parvathy, A. K., Arul, R. & Padmanathan, K. A new heuristic algorithm for economic load dispatch incorporating wind power, p. 47–65. 10.1007/978-981-16-2674-6_5 (2022).
Qin H, Wu Z, Wang M. Demand-side management for smart grid networks using stochastic linear programming game. Neural Comput. Appl. 2020;32:139–149. doi: 10.1007/s00521-018-3787-4. DOI
He X, Yu J, Huang T, Li C. Distributed power management for dynamic economic dispatch in the multimicrogrids environment. IEEE Trans. Control Syst. Technol. 2019;27:1651–1658. doi: 10.1109/TCST.2018.2816902. DOI
Rajagopalan, A. & Montoya, O. D. Environmental economic load dispatch considering demand response using a new heuristic optimization algorithm, p. 220–42. 10.4018/978-1-6684-8816-4.ch013 (2023).
Lokeshgupta B, Sivasubramani S. Multi-objective dynamic economic and emission dispatch with demand side management. Int. J. Electr. Power Energy Syst. 2018;97:334–343. doi: 10.1016/j.ijepes.2017.11.020. DOI
Karthik N, Parvathy AK, Arul R, Jayapragash R, Narayanan S. Economic load dispatch in a microgrid using Interior Search Algorithm. Innov. Power Adv. Comput. Technol IEEE. 2019;2019:1–6. doi: 10.1109/i-PACT44901.2019.8960249. DOI
Bhamidi L, Shanmugavelu S. Multi-objective harmony search algorithm for dynamic optimal power flow with demand side management. Electr. Power Comp. Syst. 2019;47:692–702. doi: 10.1080/15325008.2019.1627599. DOI
Narimani M, Joo J-Y, Crow M. Multi-objective dynamic economic dispatch with demand side management of residential loads and electric vehicles. Energies. 2017;10:624. doi: 10.3390/en10050624. DOI
Nagarajan K, Rajagopalan A, Angalaeswari S, Natrayan L, Mammo WD. Combined economic emission dispatch of microgrid with the incorporation of renewable energy sources using improved mayfly optimization algorithm. Comput. Intell. Neurosci. 2022;2022:1–22. doi: 10.1155/2022/6461690. PubMed DOI PMC
Basu M. Dynamic economic dispatch with demand-side management incorporating renewable energy sources and pumped hydroelectric energy storage. Electr. Eng. 2019;101:877–893. doi: 10.1007/s00202-019-00793-x. DOI
Basu M. Fuel constrained dynamic economic dispatch with demand side management. Energy. 2021;223:120068. doi: 10.1016/j.energy.2021.120068. DOI
Nwulu NI, Xia X. Multi-objective dynamic economic emission dispatch of electric power generation integrated with game theory based demand response programs. Energy Convers. Manag. 2015;89:963–974. doi: 10.1016/j.enconman.2014.11.001. DOI
Mohammadjafari M, Ebrahimi R. Multi-objective dynamic economic emission dispatch of microgrid using novel efficient demand response and zero energy balance approach. Int. J. Renew. Energy Res. 2020 doi: 10.20508/ijrer.v10i1.10322.g7846. DOI
Li P, Hu J, Qiu L, Zhao Y, Ghosh BK. A distributed economic dispatch strategy for power-water networks. IEEE Trans. Control Netw. Syst. 2022;9:356–366. doi: 10.1109/TCNS.2021.3104103. DOI
Duan Y, Zhao Y, Hu J. An initialization-free distributed algorithm for dynamic economic dispatch problems in microgrid: Modeling, optimization and analysis. Sustain. Energy Grids Netw. 2023;34:101004. doi: 10.1016/j.segan.2023.101004. DOI
Mou J, Gao K, Duan P, Li J, Garg A, Sharma R. A machine learning approach for energy-efficient intelligent transportation scheduling problem in a real-world dynamic circumstances. IEEE Trans. Intell. Transp. Syst. 2023;24:15527–15539. doi: 10.1109/TITS.2022.3183215. DOI
Zhang L, Yin Q, Zhu W, Lyu L, Jiang L, Koh LH, et al. Research on the orderly charging and discharging mechanism of electric vehicles considering travel characteristics and carbon quota. IEEE Trans. Transp. Electrif. 2023 doi: 10.1109/TTE.2023.3296964. DOI
Karthik N, Parvathy AK, Arul R. Multi-objective economic emission dispatch using interior search algorithm. Int. Trans. Electr. Energy Syst. 2019;29:e2683. doi: 10.1002/etep.2683. DOI
Rajagopalan A, Kasinathan P, Nagarajan K, Ramachandaramurthy VK, Sengoden V, Alavandar S. Chaotic self-adaptive interior search algorithm to solve combined economic emission dispatch problems with security constraints. Int. Trans. Electr. Energy Syst. 2019 doi: 10.1002/2050-7038.12026. DOI
Karthik N, Parvathy AK, Arul R, Padmanathan K. Multi-objective optimal power flow using a new heuristic optimization algorithm with the incorporation of renewable energy sources. Int. J. Energy Environ. Eng. 2021;12:641–678. doi: 10.1007/s40095-021-00397-x. DOI
Zhang L, Sun C, Cai G, Koh LH. Charging and discharging optimization strategy for electric vehicles considering elasticity demand response. ETransportation. 2023;18:100262. doi: 10.1016/j.etran.2023.100262. DOI
Mo J, Yang H. Sampled value attack detection for busbar differential protection based on a negative selection immune system. J. Mod. Power Syst. Clean. Energy. 2023;11:421–433. doi: 10.35833/MPCE.2021.000318. DOI
Cao B, Dong W, Lv Z, Gu Y, Singh S, Kumar P. Hybrid microgrid many-objective sizing optimization with fuzzy decision. IEEE Trans. Fuzzy Syst. 2020;28:2702–2710. doi: 10.1109/TFUZZ.2020.3026140. DOI
Wu Q, Fang J, Zeng J, Wen J, Luo F. Monte Carlo simulation-based robust workflow scheduling for spot instances in cloud environments. Tsinghua Sci. Technol. 2024;29:112–126. doi: 10.26599/TST.2022.9010065. DOI
Wang Z, Li J, Hu C, Li X, Zhu Y. Hybrid energy storage system and management strategy for motor drive with high torque overload. J. Energy Storage. 2024;75:109432. doi: 10.1016/j.est.2023.109432. DOI
Biswas PP, Suganthan PN, Amaratunga GAJ. Optimal power flow solutions incorporating stochastic wind and solar power. Energy Convers. Manag. 2017;148:1194–1207. doi: 10.1016/j.enconman.2017.06.071. DOI
Jabir H, Teh J, Ishak D, Abunima H. Impacts of demand-side management on electrical power systems: A review. Energies. 2018;11:1050. doi: 10.3390/en11051050. DOI
Meyabadi AF, Deihimi MH. A review of demand-side management: Reconsidering theoretical framework. Renew. Sustain. Energy Rev. 2017;80:367–379. doi: 10.1016/j.rser.2017.05.207. DOI
Akbari MA, Zare M, Azizipanah-abarghooee R, Mirjalili S, Deriche M. The cheetah optimizer: A nature-inspired metaheuristic algorithm for large-scale optimization problems. Sci. Rep. 2022;12:10953. doi: 10.1038/s41598-022-14338-z. PubMed DOI PMC
Memon ZA, Akbari MA, Zare M. An improved cheetah optimizer for accurate and reliable estimation of unknown parameters in photovoltaic cell and module models. Appl. Sci. 2023;13:9997. doi: 10.3390/app13189997. DOI
Song H-M, Xing C, Wang J-S, Wang Y-C, Liu Y, Zhu J-H, et al. Improved pelican optimization algorithm with chaotic interference factor and elementary mathematical function. Soft Comput. 2023;27:10607–10646. doi: 10.1007/s00500-023-08205-w. DOI
Karthik, N., Parvathy, A. K., Arul, R. & Padmanathan, K. Levy interior search algorithm-based multi-objective optimal reactive power dispatch for voltage stability enhancement, p. 221–44. 10.1007/978-981-15-7241-8_17. (2021).
Mirjalili S, Mirjalili SM, Lewis A. Grey Wolf optimizer. Adv. Eng. Softw. 2014;69:46–61. doi: 10.1016/j.advengsoft.2013.12.007. DOI
Faris H, Aljarah I, Al-Betar MA, Mirjalili S. Grey wolf optimizer: A review of recent variants and applications. Neural Comput. Appl. 2018;30:413–435. doi: 10.1007/s00521-017-3272-5. DOI